"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta OGM. Mostrar todas las entradas
Mostrando entradas con la etiqueta OGM. Mostrar todas las entradas

11 de octubre de 2013

CREAN BACTERIAS CON PROTEINAS A MANERA DE JERINGUILLAS MICROSCÓPICAS PARA LA INSERCIÓN DE PROTEÍNAS TERAPÉUTICAS A CÉLULAS HUMANAS

Científicos del Centro Nacional de Biotecnología (CNB) del CSIC de España han obtenido una patente en los Estados Unidos que les permite utilizar bacterias no patógenas. Las bacterias (E.coli) modificadas tienen en su membrana unas proteínas a modo de jeringuilla con las que son capaces de inyectar anticuerpos de pequeño tamaño (nanoanticuerpos) y otras proteínas con potencial terapéutico (p.ej. enzimas) a células humanas, evitando de esta manera la barrera que representa la membrana plasmática de la célula. 
En el caso de usar nanoanticuerpos, estos se podrían unir dentro de la célula a una proteína diana que participase en un proceso patológico para inactivar su función. 
Para comprobar la viabilidad de esta tecnología, el grupo dirigido en el CNB por el doctor Luis Ángel Fernández introdujo estos nanoanticuerpos en el citoplasma de células humanas demostrando que se unían especificamente a su proteína diana.
Una de las principales ventajas de este sistema es que la producción de los nanoanticuerpos la realiza la propia bacteria de manera continua, lo que podría reducir el coste y el número de dosis necesario para administrar estos anticuerpos de forma efectiva. 
Fernández recalca además su seguridad, ya que la inyección de los anticuerpos por parte de E. coli no conlleva ni la invasión de la células por parte de las bacterias ni la transferencia de manterial genético, al contrario que lo que ocurre con virus modificados. 
El objetivo actual de este grupo de investigación es combinar estas jeringas moleculares en bacterias "probióticas" con nuevas modificaciones de forma que actuasen en el intestino y otras mucosas del organismo como auténticos "microrrobots" dirigidos tanto para la detección como el tratamiento in situ de lesiones de tipo inflamatorio o tumoral.

5 de octubre de 2013

DISEÑAN NUEVA VÍA METABÓLICA PARA CONVERTIR MAS EFICIENTEMENTE LOS AZÚCARES EN BIOCOMBUSTIBLES


Investigadores de la UCLA, en Estados Unidos, han creado una nueva vía metabólica sintética para descomponer la glucosa que podría conducir a un aumento del 50% en la producción de biocombustibles.
La nueva vía está destinada a sustituir la vía metabólica natural conocida como glucólisis, una serie de reacciones químicas que casi todos los organismos utilizan para convertir los azúcares en los precursores moleculares que las células necesitan. La glucólisis convierte cuatro de los seis átomos de carbono que se encuentran en la glucosa en moléculas de dos átomos de carbono conocidas como acetil-CoA, un precursor para los biocombustibles como el etanol y butanol, así como de los ácidos grasos, aminoácidos y productos farmacéuticos. Sin embargo, los dos carbonos de glucosa restantes se pierden como dióxido de carbono.
La glucólisis se utiliza actualmente en biorefinerias para convertir los azúcares derivados de la biomasa vegetal en biocombustibles, pero la pérdida de dos átomos de carbono por cada seis se considera como una obstáculo importante en la eficiencia del proceso. La vía glucolítica sintética del equipo de investigación de la UCLA convierte los seis átomos de carbono de la glucosa en tres moléculas de acetil-CoA sin que se pierdan en dióxido de carbono.
El investigador principal es James Liao, quien afirma que esta vía sintética resolvió una de las limitaciones más importantes en la producción de biocombustibles y biorrefinería: la pérdida de un tercio del carbono.
Esta ruta sintética utiliza enzimas que se encuentran en varias vías distintas en la naturaleza.
El equipo la probó por primera vez y confirmó que la nueva vía trabajaba in vitro. Luego, manipularon genéticamente a bacterias E.coli para utilizar la nueva vía metabólica y demostraron la conservación completa de los carbonos. Las moléculas de acetil-CoA resultantes se pueden utilizar para producir un compuesto químico deseado con una mayor eficiencia de carbono. Los investigadores llamaron a su nueva vía híbrida como "glucólisis no oxidativa" o NOG .
Los investigadores también observaron que esta nueva vía de síntesis podría ser utilizada con muchos otros tipos de azúcares, que en cada caso tienen diferentes números de átomos de carbono por molécula, y ningún carbono se desperdiciaría.
Igor Bogorad, uno estudiante graduado del laboratorio de Liao, afirma que para biorefinación, una mejora del 50% en el rendimiento sería un enorme aumento y el NOG puede ser una buena plataforma con diferentes azúcares para una conversión del 100% a acetil-CoA. Además prevee que NOG tendrá aplicaciones de amplio alcance y abrirá nuevas posibilidades debido a la manera en que podemos conservar el carbono.
Los investigadores también sugieren que esta nueva vía podría ser utilizada en la producción de biocombustibles utilizando microorganismos fotosintéticos.

14 de septiembre de 2013

POSIBLE VACUNA CONTRA LA MALARIA ELABORADA A PARTIR DE PARÁSITOS ATENUADOS MEDIANTE INGENIERÍA GENÉTICA

Un estudio podría ofrecer esperanza de una nueva vacuna de patógenos vivos-atenuados contra la malaria. Este estudio sugiere que los parásitos de la malaria modificados genéticamente (GAP) que son atenuados a través de precisas supresiones de genes podrían ser utilizados como una vacuna que protege contra la infección de la malaria. Esto significa que la versión inofensiva (atenuada) del parásito podría interactuar con el cuerpo de la misma manera como la versión infecciosa , pero sin posibilidad de causar enfermedad. La vacunación con GAPs  podría inducir respuestas inmunitarias robustas que protegen contra una futura infección con malaria.
Según la Organización Mundial de la Salud , hubo 219 millones de casos documentados de la malaria en el 2010, causando la muerte de hasta 1,2 millones de personas en todo el mundo. Tratamientos antipalúdicos están disponibles para reducir el riesgo de infección, pero hasta el momento no existe una vacuna eficaz contra la enfermedad.
El mes pasado, un equipo de científicos anunció los resultados de un ensayo con un nuevo tipo de vacuna contra la malaria, una preparación de parásitos debilitado por radiación. El ensayo mostró resultados prometedores , pero el método de la vacunación no era óptimo, requiriendo administración intravenosa y múltiples dosis altas. Este nuevo estudio describe un método de atenuación a través de la ingeniería genética en lugar de la radiación, que ofrece esperanza para una vacuna más consistente que da una mejor protección.
Stefan Kappe, Ph.D., autor principal del artículo y profesor de Seattle BioMed afirma que la malaria es una de las principales causas de muerte en el mundo, y pone en peligro el 40 por ciento de la población mundial, pero aún no existe una vacuna efectiva. En este trabajo se muestra que los parásitos genéticamente modificados son una opción viable y prometedora para el desarrollo de una vacuna contra la malaria, y actualmente están diseñando la próxima generación de cepas atenuadas del parásito con el objetivo de entrar en los estudios clínicos en breve.
Por primera vez, los investigadores crearon una versión debilitada del parásito de la malaria humana mediante la alteración de su ADN. Ellos probaron la seguridad del nuevo parásito modificado mediante inyección de seis voluntarios humanos a través de picaduras de mosquitos. Cinco de los seis voluntarios no mostraron infección con el parásito, sugiriendo que la nueva técnica genética tiene potencial como la base para una vacuna contra la malaria.
Stefan Kappe tambien cree que este enfoque ofrece un nuevo camino para hacer una vacuna de protección contra la malaria que puede que supere las limitaciones de los intentos de desarrollo previos. Los parásitos genéticamente modificados potencialmente proporcionan un acercamiento potente y escalable a la vacunación contra la malaria.

6 de septiembre de 2013

DESARROLLAN ARROZ TRANSGÉNICO EFICAZ CONTRA EL ROTAVIRUS

Un equipo de investigadores liderado por Yoshikazy Yuki, de la Universidad de Tokio, ha desarrollado una forma de arroz transgénico que contiene un anticuerpo contra el rotavirus, un patógeno que, según la Organización Mundial de la Salud (OMS) causa más de 500.000 muertes de niños al año por la diarrea que inducen.
El trabajo ha consistido en incorporar al arroz, mediante la bacteria Agrobacterium tumefaciens, un gen que expresa el dominio variable de un anticuerpo específico contra rotavirus que se encuentra en las llamas; además de la tecnología del RNAi para suprimir la producción de las principales proteínas de almacenamiento endógenos de arroz. 
En los experimentos, los ratones que comieron del arroz, tanto los normales como los que tenían un sistema inmunitario deficiente, quedaron protegidos contra los rotavirus o en todo caso, se vio disminuida la carga viral.
Se ha visto que las semillas de arroz así conseguidas mantienen esta propiedad durante un año después de ser almacenado y que aguantan una cocción de media hora a 94°C. 
El objetivo del trabajo es claro: ayudar a prevenir y tratar la enfermedad, complementándose con las vacunas que, recientemente, se han desarrollado contra el rotavirus, y que la OMS aconseja que se incorporen a la cartera sanitaria básica de los países afectados.
Si estas vacunas funcionaran al 100% el nuevo arroz no haría falta, pero por razones que aún no están claras –aunque se apunta a una debilidad del sistema inmune debido a la desnutrición- los preparados funcionan peor en países pobres que en los ricos, con tasas de protección que caen hasta el 50%.
Yuki advierte que el producto aún no ha sido ensayado en humanos, lo que implica que la posibilidad de que llegue su uso está a una década vista.

21 de agosto de 2013

UNA PRODUCCIÓN MÁS EFICIENTE DE BIOCOMBUSTIBLE MEDIANTE EL SILENCIAMIENTO DE UN GEN EN LA VÍA DE BIOSÍNTESIS DE LA LIGNINA

La limitada disponibilidad de combustibles fósiles estimula la búsqueda de diferentes fuentes de energía. El uso de biocombustibles es una de las alternativas. Los azúcares derivados de los granos de los cultivos agrícolas se pueden utilizar para producir biocombustible, pero estos cultivos ocupan suelos fértiles necesarios para la producción de alimentos y piensos.
Las plantas de crecimiento rápido como el álamo, eucalipto o varios residuos de hierba, como el rastrojo de maíz y el bagazo de caña no compiten y pueden ser una fuente sostenible de biocombustibles. Una colaboración internacional de científicos han identificado un nuevo gen en la vía de biosíntesis de la lignina, un importante componente de las paredes celulares secundarias de plantas, que limita la conversión de biomasa en energía.
Estos hallazgos abren el camino a nuevas iniciativas de apoyo a una economía de base biológica. Sally M. Benson, director del Stanford University's Global Climate and Energy Project cree que este emocionante y fundamental  descubrimiento proporciona una vía alternativa para modificar la lignina en las plantas y tener el potencial de aumentar considerablemente la eficiencia de la conversión de cultivos energéticos para biocombustibles.
La pared celular de una planta se compone principalmente de lignina y moléculas de azúcar, tales como la celulosa. La celulosa se puede convertir en glucosa, que luego se puede utilizar en un proceso de fermentación clásica para producir alcohol, similar a hacer cerveza o vino. La lignina es un tipo de cemento que incorpora las moléculas de azúcar y por lo tanto da firmeza a las plantas. Por desgracia, la lignina reduce gravemente la accesibilidad a las moléculas de azúcar para la producción de biocombustibles. La lignina tiene que ser eliminada a través de un proceso medioambientalmente inamistoso que consume energía. Las plantas con una menor cantidad de lignina o con  lignina de más fácil descomposición pueden ser un verdadero beneficio para la producción de biocombustibles y bioplásticos. Lo mismo es cierto para la industria del papel que utiliza las fibras de celulosa para producir papel.
Durante muchos años los investigadores han estado estudiando la vía de biosíntesis de lignina en las plantas. Incrementando la percepción de este proceso se puede conducir a nuevas estrategias para mejorar la accesibilidad a las moléculas de celulosa. Utilizando el modelo de planta Arabidopsis thaliana, los científicos han identificado una nueva enzima en la vía de biosíntesis de la lignina. Esta enzima llamada cafeoil shikimato esterasa (CSE), cumple un papel fundamental en la biosíntesis de lignina. El silenciamiento del gen CSE, dió lugar a 36% menos de lignina por gramo de material de tallo. Además, la lignina restante tenía una estructura alterada. Como resultado, la conversión directa de la celulosa en glucosa a partir de la biomasa de la planta sin tratamiento previo aumentó cuatro veces, a partir de 18% en las plantas de control a 78% en las plantas mutantes.
Estas nuevas perspectivas ahora se pueden utilizar para proteger poblaciones naturales de cultivos energéticos como el álamo, eucalipto, mijo u otras especies de pastos. Alternativamente, la expresión del gen CSE puede modificarse por ingeniería genética en cultivos energéticos. Una cantidad reducida de lignina o una estructura de lignina adaptada puede contribuir a una conversión más eficiente de la biomasa a energía.

17 de julio de 2013

CREAN RATONES GENÉTICAMENTE MODIFICADOS CON CROMOSOMAS ARTIFICIALES HUMANOS PARA TERAPIA GÉNICA

Durante un estudio no publicado, unos investigadores crearon en el laboratorio un cromosoma humano artificial (HAC, por sus siglas en inglés), utilizando bloques de construcción químicos, algo que resulta significativo de la tecnología cada vez más avanzada del nuevo campo de la biología sintética. 
Es la primera vez que se ha creado 'desde cero' una forma tan avanzada de un cromosoma humano sintético hecho para trabajar en un modelo animal según ha declarado Natalay Kouprina, del Instituto Nacional del Cáncer de EE.UU., miembro del equipo científico que creó los ratones con HAC. 
La científica ha explicado que el propósito del desarrollo de este proyecto es crear un vector de transporte para la entrega de genes a células humanas para estudiar su función en ellas y potencialmente esto tiene aplicaciones para la terapia génica, que puede realizar la corrección de la deficiencia génica en los seres humanos pues se sabe que hay un montón de enfermedades hereditarias debido a la mutación de ciertos genes. 
Según los investigadores, el HAC es también conocido como 'cromosoma 47', porque el complemento normal de cromosomas en las células humanas es de 46. Una gran ventaja en la terapia génica es que el cromosoma artificial 47 no interfiere con los otros 46, a diferencia de la terapia génica convencional, donde un gen adicional a menudo se inserta al azar en el genoma humano. 
Según afirma Kouprina la idea es tomar células de la piel de un paciente, convertirlas en células madre e introducir HAC en estas células con copias sanas del gen que produce la enfermedad. Entonces volver a insertar estas células con el cromosoma extra en el paciente para el tratamiento de la enfermedad.  
Es evidente que hay un largo camino por recorrer antes de que se pueda utilizar el HAC para el tratamiento de enfermedades genéticas en humanos. Sin embargo, esta es un área interesante para la exploración científica con grandes beneficios potenciales.

6 de julio de 2013

UNA ELABORACIÓN MAS BARATA DE BIOCOMBUSTIBLE A TRAVÉS DE HONGOS

Unos ingenieros genéticos han encontrado un truco gracias al cual ciertos hongos pueden ser usados para la producción de biocombustibles a un costo mucho menor que anteriormente.
Es bastante fácil obtener biocombustible a partir de vegetales ricos en almidón, pero esto coloca la producción de combustible en competencia directa con la producción de alimentos. Fabricar biocombustible a partir de lignocelulosa es por lo tanto una opción mejor.
La lignocelulosa de residuos de madera o paja es la materia prima renovable más común del mundo, pero, debido a su estructura compleja, es significativamente más difícil de usar para elaborar biocombustibles que el almidón.
Los desechos de lignocelulosa pueden ser usados para producir biocombustible solamente si las cadenas largas de celulosa y xilanos pueden ser escindidas con éxito, de manera que el resultado sea un conjunto de moléculas de azúcares más pequeñas. A tal fin, se utilizan hongos que, por medio de una señal química específica, pueden ser inducidos a producir las enzimas necesarias. Sin embargo, este procedimiento es muy caro.
La situación va ahora a cambiar drásticamente. Especialistas de la Universidad Tecnológica de Viena en Austria han estado investigando el "interruptor" molecular que regula la producción de enzimas en el hongo. Y han descubierto cómo aprovecharlo.
Trichoderma reesei es un organismo involucrado en la degradación de la biomasa celulósica y hemicelulósica. Por consiguiente, las enzimas correspondientes se utilizan comúnmente en diferentes tipos de industrias, y recientemente ganaron una importante importancia para la producción de biocarburantes de segunda generación. Muchas cepas de T. reesei industriales actualmente en uso se derivan de la cepa Rut-C30, en el que la expresión de celulasa y hemicelulasa es liberada de la represión de catabolitos de carbono.
Sin embargo, sustancias inductoras son todavía necesarias para una cantidad satisfactoria de la formación de proteínas.
Como resultado del trabajo realizado por el equipo de Robert Mach y Christian Derntl, ahora es posible fabricar hongos genéticamente modificados que produzcan las enzimas necesarias de modo totalmente independiente, haciendo así mucho más barata la producción de biocombustible.
Ellos reportaron de una cepa de T. reesei, que presenta un alto nivel de expresión de xilanasa sin importar si se utilizan sustancias inductoras (por ejemplo, D-xilosa, xilobiosa). Ademas, encontraron que una única mutación puntual en el gen que codifica el regulador de xilanasa 1 (Xyr1) es responsable de esta fuerte desregulación de la expresión de endoxilanasa y, ademas, un muy elevado nivel basal de expresión de celulasa. Sólo el uso de soforosa como inductor todavía conduce a una ligera inducción de la expresión de celulasa. 
El dominio regulador donde se encuentra la mutación descrita es sin duda un objetivo de investigación interesante para todos los organismos que también dependen de ciertas condiciones de inducción.

20 de junio de 2013

TABACO MODIFICADO GENÉTICAMENTE, EL BIOCOMBUSTIBLE DEL FUTURO

El tabaco podría ser el biocombustible del futuro y generar energía en vez de humo. Los científicos tratan de modificar genéticamente la planta del tabaco para producir combustible con el fin de reducir costes. Los experimentos acaban de empezar.
En el laboratorio de la Universidad de Berkeley, California, los investigadores intentan incorporar en la planta del tabaco características genéticas de algas para la biosíntesis de hidrocarburos, de tal manera que la planta pueda optimizar la absorción de luz y de carbono.
Actualmente, una estrategia para producir biocombustibles consiste en desestructurar la biomasa vegetal y utilizar microorganismos para fermentar los azúcares resultantes en alcohol. Por el contrario, este grupo de científicos trabajó para desarrollar una planta capaz de tomar el dióxido de carbono del aire y convertirlo directamente en un combustible prácticamente listo para ser utilizado.
Fue necesario desarrollar plantas de tabaco optimizadas en la captación de CO2 y energía solar, y en la producción de moléculas de hidrocarburos. Respecto al último punto, los científicos usaron versiones sintéticas de genes presentes en las cianobacterias que codifican enzimas para la síntesis de alcanos, una clase de hidrocarburo. 
Para aumentar la captación de CO2, el equipo utilizó nuevamente genes de cianobacterias que están involucrados en la incorporación de carbonato a partir del agua circundante, lográndose así facilitar, en el caso de las plantas, el transporte del carbono presente en el aire, al interior de los cloroplastos.
Anastasios Melis, un biólogo que forma parte de la investigación dijo que han modificado las hojas del tabaco de modo que se acumulen aceites en los espacios de aire dentro de la misma. Como parte del protocolo que han desarrollado, están eliminando todos los productos lipofílicos incluida la clorofila y otros compuestos de la clorofila.
Según los expertos, una fotosíntesis más eficaz permite producir más biocombustible. Pero, además, el tabaco transgénico tiene ventajas añadidas sobre la soja, el maíz o la caña de azúcar transgénica, ya que un aumento de precios, que resulta nefasto en el caso de los alimentos, no tendría consecuencias en este caso.
"El tabaco es perfecto porque no se come. Solo se necesita una infraestructura para su cultivo y producción. Y por eso es una excelente opción para hacer combustible", declaró la investigadora Peggy Lemaux, que trabaja en el departamento de biología microbiana de las plantas en la misma universidad.Pero antes de que lo hiciera la Universidad de Berkeley, diversas empresas y centros de investigación de todo el mundo detectaron también las virtudes del tabaco en diversos proyectos. El objetivo es la obtención de bioetanol y biodiésel de diversas formas, una de ellas, mediante la utilización de ingeniería genética.
Los impulsores de este tipo de proyectos señalan las ventajas económicas y medioambientales que supondría la producción de biocombustible a partir del tabaco: se da una salida a las plantaciones de este cultivo, se genera empleo en el mundo rural, se aprovechan terrenos no aptos para alimentos y se reduce la dependencia de los combustibles fósiles y su impacto en la contaminación y el cambio climático.
El interés en los biocombustibles ha crecido en las últimas décadas. La actual producción de biocombustibles supera los 100 millones de litros en todo el mundo, lo que representa casi un 3% del combustible para el transporte en carretera.
Por su parte, la Agencia Internacional de la Energía (AIE) se ha fijado como objetivo que una cuarta parte de la demanda mundial de combustibles sea de origen biológico de aquí al año 2050.

Para mas información aquí les dejo un vídeo de  euronews:

26 de mayo de 2013

DISEÑAN BACTERIAS PRODUCTORAS DE ELECTRICIDAD QUE SOLO NECESITAN DE HIDRÓGENO Y DIÓXIDO DE CARBONO

Investigadores de la Universidad de Massachusetts han diseñado una cepa de bacterias productoras de electricidad que pueden crecer utilizando gas de hidrógeno como su único donante de electrones y dióxido de carbono como su única fuente de carbono.
Amit Kumar, un investigador en el estudio, dijo que esto representa el primer resultado de la producción de corriente únicamente con hidrógeno.
Bajo la dirección de Derek Lovley el grupo de laboratorio ha estado estudiando las bacterias Geobacter desde que Lovley por primera vez aisló Geobacter metallireducens en los sedimentos de arena del río Potomac en 1987. Las especies Geobacter son de interés debido a su capacidad de biorremediación, el potencial de la bioenergía, nuevas capacidades de transferencia de electrones, la capacidad de transferir electrones fuera de la célula y transportar estos electrones a grandes distancias a través de filamentos conductores conocidos como nanocables microbianos.
Kumar y sus colegas estudiaron un pariente de G. metallireducens llamado Geobacter Sulfurreducens, que tiene la capacidad de producir electricidad mediante la reducción de compuestos orgánicos de carbono con un electrodo de grafito como el óxido de hierro o de oro para servir como el único aceptor de electrones. Ellos modificaron genéticamente una cepa de las bacterias que no necesitaban de carbono orgánico para crecer en una celda de combustible microbiana.
Kumar expresó que la cepa modificada produce fácilmente la corriente eléctrica en las celdas de combustible microbianas con gas de hidrógeno como el único donante de electrones y ninguna fuente de carbono orgánico. El investigador además señala que cuando el suministro de hidrógeno a la celda de combustible microbiana era detenido intermitentemente, la corriente eléctrica se reducía significativamente y las células unidas a los electrodos no generaban ninguna corriente significativa.

TOMATES PÚRPURAS GENÉTICAMENTE MODIFICADOS CON MAYOR CANTIDAD DE ANTIOXIDANTES

Científicos del Centro John Innes en Norfolk crearon un tomate modificado genéticamente al introducir dos genes de la planta boca de dragón, este nuevo tomate posee un mejor sabor, y cuenta con una mayor cantidad de antioxidantes, adquiriendo así un llamativo color púrpura.
Uno de los problemas más serios que enfrenta la industria del tomate aparece a la hora de retirar el fruto de la planta. Los tomates son recolectados mientras están verdes, lo que hace más sencillo su transporte y almacenamiento debido a que son más duros y resistentes, pero esto provoca que pierdan sabor y textura, ya que el fruto no alcanza la madurez necesaria en la planta. Esto va directamente en contra de las necesidades del consumidor y de las grandes cadenas de distribución, que esperan un tomate sabroso y firme. En mayo del año pasado se completó la secuencia del genoma del tomate, instalando la posibilidad de recuperar su sabor a través de la ingeniería genética.
Sin embargo, lo que tenemos hoy aquí va más allá del sabor. Se trata de un tomate púrpura, modificado genéticamente por científicos del Centro John Innes en Norfolk. Este tomate incorpora dos genes de la planta conocida como “boca de dragón”. Estos genes activan a otros que permanecían dormidos en el tomate, provocando un aumento en la producción de antocianina. Las antocianinas se pueden encontrar naturalmente en una gran cantidad de frutas y verduras, y es responsable por algunos de los tonos más reconocibles, como el rojo de la zarzamora y el azul en el arándano. Sin embargo, el rol más importante de las antocianinas es el de antioxidantes con propiedades anticancerígenas.
Otro punto a favor del tomate púrpura modificado genéticamente está en su duración una vez que es cosechado. Las pruebas realizadas por los científicos revelan que pasan unos 48 días hasta que el tomate púrpura se echa a perder tras su cosecha, contra las tres semanas del tomate convencional. Esto permitiría a la industria dejar que el tomate se desarrolle por mucho más tiempo en la planta, ganando olor y sabor, pero conservando su resistencia para el transporte. Ahora, tal vez el tomate púrpura sea un poco chocante a la vista, en especial sabiendo que fue modificado genéticamente, pero lo cierto es que el rojo no tiene ninguna exclusividad sobre los tomates.
Existen tomates que son púrpura en forma natural, como el cherokee púrpura, pero también los hay en verde, amarillo, naranja, y hasta rosa. Las pruebas que establecerán los beneficios del tomate modificado llevarán doce meses, pero serán necesarios dos años adicionales para que las autoridades den el visto bueno (o no) a su venta en forma de zumo.

29 de abril de 2013

LOGRAN PRODUCIR DIESEL MEDIANTE E. COLI MODIFICADA GENÉTICAMENTE


Con el apoyo de la compañía angloholandesa Shell, un equipo de la Universidad de Exeter, Reino Unido, pudo hacer que cepas especiales de E. Coli produzcan diesel. Sin embargo, la ventaja aquí es que no necesita ser mezclado con productos derivados del petróleo, como se requiere comúnmente para el biodiesel derivado de aceites de plantas.
De acuerdo con el estudio publicado por PNAS, aunque la tecnología todavía se enfrenta a muchos desafíos significativos de comercialización su similitud con el diesel tradicional lo colocan como una opción viable ante otras alternativas.
Esto también significa que esta nueva modalidad puede utilizarse en suministros de corriente con la infraestructura existente, ya que los motores de tuberías y tanques no necesitan ser modificados para sus especificaciones.
De acuerdo con el profesor John Love, del departamento de Biociencias de la Universidad de Exeter, la producción de un biocombustible comercial que pueda usarse sin necesidad de modificar los vehículos ha sido el objetivo de este proyecto. Por otra parte, también estima que la sustitución por el diésel convencional con un biocombustible de carbono neutral en volúmenes comerciales sería un gran paso hacia el cumplimiento del objetivo de reducir hasta el 80% en las emisiones de gases de efecto invernadero para el año 2050.
Los científicos modificaron los genes de una cepa de E.Coli para que en lugar de transformar el azúcar en grasa, lo que hace de forma natural, lo convierta en moléculas de hidrocarburo sintético con una composición química similar al diésel. Durante este proceso, los científicos comprobaron que es posible crear moléculas de aceite combustible sintético.
La Escherichia coli es el ser vivo más estudiado por el ser humano y, desde la década de los 70, los científicos realizaron proezas con sus genes para lograr que éstos produzcan insulina para la diabetes o proteínas empleadas para el tratamiento del cáncer, por ejemplo.
Por su parte, los medios de transporte consumen en la actualidad el 60% de la producción mundial de petróleo y su demanda podría dispararse de los 85 millones de barriles diarios registrados en 2007, a los 104 millones para 2030.
De acuerdo con los científicos, la mayor parte de la producción de petróleo se encuentra cada vez más en regiones inseguras, lo que ocasiona interrupciones en la distribución y un aumento de los costes.
La técnica funciona a nivel experimental, pero ahora habrá que superar el gran desafío de lograrlo de forma industrial, ya que para lograr una simple cucharilla de diésel sintético se necesitan 100 litros de bacterias. En quince años se sabrá si se consigue.

28 de abril de 2013

CIENTIFICOS URUGUAYOS PRODUJERON PRIMEROS CORDEROS TRANSGÉNICOS FLUORESCENTES DE SUDAMÉRICA


Un grupo de científicos uruguayos, en asociación con el Instituto Pasteur de Montevideo, anunció el nacimiento de corderos genéticamente modificados, los primeros en Latinoamérica y que tienen como característica llamativa que son fluorescentes bajo luz ultravioleta.
La transgénesis en esta especie no estaba disponible en Latinoamérica y este logro posiciona a Uruguay en el más alto nivel científico internacional aseguraron la Fundación Instituto de Reproducción Animal Uruguay (IRAUy) y el Instituto Pasteur.
Los antecedentes en la región son una vaca transgénica que produce proteínas de origen humano en su leche, lograda en Argentina en 2011, y cabras transgénicas en Brasil, que también producen una proteína de uso en humanos.
Los nueve corderos transgénicos uruguayos nacieron en octubre de 2012 en el IRAUy, donde se desarrollan sin problemas y no se distinguen de sus pares no transgénicos, dijo Alejo Menchaca, presidente del instituto.
En los últimos meses realizaron análisis y estudios moleculares y genéticos para confirmar que los corderos efectivamente tenían el gen que introdujeron los científicos en los embriones ovinos: un gen proveniente de la medusa Aequorea victoria que es el responsable de la producción de una proteína de color verde fluorescente en dicha especie . Esta proteína se utiliza hace años como marcador y ellos la usaron en este caso para saber fácilmente si los animales eran portadores de ese gen, comprobar el éxito de la técnica.
El objetivo era probar una técnica novedosa de transgénesis, que según el científico es más sencilla y eficiente que otras tradicionales. Menchaca indicó que es una técnica muy eficiente porque todos los que nacieron son positivos y que ya funcionando, se puede manejar otro gen de mayor interés, para producir una proteína específica.
Las investigaciones en este campo apuntan a la posibilidad de tomar el gen responsable de la producción de una proteína faltante en algunas patologías humanas (por ejemplo la insulina en los diabéticos), incorporarlo al genoma de un embrión de una oveja, que al nacer produciría esa sustancia en la leche. Eso permitiría aislar esa proteína para elaborar medicamentos, de forma más sencilla que en la actualidad, explicó el científico.
Los resultados de la investigación aún no fueron publicados en revistas especializadas, algo que confían ocurra este año.

24 de abril de 2013

CREAN TOMATES MODIFICADOS GENETICAMENTE PARA ELIMINAR EL COLESTEROL MALO DE QUIENES LO CONSUMEN


Se ha logrado obtener, por ingeniería genética, tomates que producen un péptido que al comerlos elimina al colesterol malo, emulando las acciones del colesterol bueno (colesterol HDL, de lipoproteínas de alta densidad), que es conocido por su papel al eliminar de las arterias al colesterol malo (colesterol LDL, de lipoproteínas de baja densidad).
El equipo de los doctores Alan M. Fogelman,director de la unidad de investigación de la aterosclerosis en la Escuela David Geffen de Medicina, y Srinavasa T. Reddy, ambos de la Universidad de California en Los Ángeles (UCLA), preparó por ingeniería genética los citados tomates y, en forma molida y liofilizada, los agregaron a la dieta rica en grasas, típica de los humanos en las naciones industrializadas, con la que se alimentó a unos ratones que no poseían la capacidad de eliminar el colesterol malo de su sangre y que inexorablemente desarrollaban inflamación y aterosclerosis cuando consumían una dieta rica en grasas.
Los investigadores constataron que los ratones que comieron los tomates enriquecidos con el péptido, los cuales representaron el 2,2 por ciento de su dieta rica en grasas, tuvieron una acumulación significativamente menor de placa aterosclerótica, menores niveles de inflamación, mayor actividad de una enzima antioxidante asociada con el colesterol bueno, niveles más altos de colesterol bueno, y menores niveles de un ácido promotor de tumores que acelera la acumulación de placa en las arterias de modelos animales.
Varias horas después de que los ratones terminaban de comer, se detectaba el péptido intacto en el intestino delgado, pero no se le encontraba así en la sangre. Según los investigadores, esto es un fuerte indicio de que el péptido actúa en el intestino delgado y luego es degradado a aminoácidos naturales antes de ser absorbido en la sangre, como sucede con los demás péptidos y proteínas del tomate. Esto hace pensar que escoger como objetivo al intestino delgado puede ser una nueva estrategia para prevenir la aterosclerosis de origen alimentario, la cual es una enfermedad provocada por placas en las arterias que puede conducir a ataques al corazón y derrames cerebrales.

31 de marzo de 2013

DISEÑAN PAREDES CELULARES VEGETALES PARA AUMENTAR LOS RENDIMIENTOS DE AZÚCAR PARA BIOCOMBUSTIBLES


La biomasa lignocelulósica es el material orgánico más abundante en la Tierra, durante miles de años se ha utilizado para la alimentación animal, y durante los últimos dos siglos ha sido un elemento básico de la industria papelera. Este recurso abundante, sin embargo, también podría suministrar los azúcares necesarios para producir biocombustibles avanzados que pueden complementar o sustituir a los combustibles fósiles.
Un desafío importante a sortear para conseguir este objetivo es encontrar maneras más rentables de extraer los azúcares. Los pasos principales para lograr este objetivo están siendo adoptados por los investigadores del Joint BioEnergy Institute (JBEI) en el Departamento de Energía de los E.E.U.U., quienes a través de herramientas de la biología sintética, han diseñado plantas saludables cuya biomasa lignocelulósica es más fácilmente descompuesta en azúcares simples para biocombustible.
Dominique Loque y sus colegas han trabajado sobre Arabidopsis, las paredes celulares secundarias de estas plantas se han manipulado genéticamente para reducir la producción de lignina y  aumentar el rendimiento de los azúcares de combustible.
Loque y su grupo de investigación se han centrado en reducir la obstinación natural de las paredes celulares de las plantas a renunciar a la fabricación de azúcares. A diferencia de los azúcares simples a base de almidón de maíz y otros granos, los azúcares de polisacáridos complejos en las paredes celulares de la planta están encerrados dentro de un polímero aromático resistente llamado lignina. Lograr que estos azúcares se liberen de sus jaulas de lignina ha requerido el uso de productos químicos costosos y no amigables con el medio ambiente a altas temperaturas, un proceso que eleva los costos de producción de biocombustibles a partir de estos azúcares.
Según Loque la lignina es el principal contribuyente a la obstinación de la pared celular para integrar sus polímeros de polisacáridos y reducir su extractabilidad y accesibilidad a las enzimas hidrolíticas. Desafortunadamente la mayoría de los esfuerzos para reducir el contenido de lignina durante el desarrollo de la planta se han traducido en la reducción severa del rendimiento de biomasa y una pérdida de la integridad de los vasos conductores, tejidos responsables de la distribución de agua y de los nutrientes desde las raíces a los demás órganos.
Para superar el problema de lignina, Loque y sus colegas reconfiguraron la regulación de la biosíntesis de la lignina y crearon un bucle artificial positivo de retroalimentación (APFL por sus siglas en inglés) para mejorar la biosíntesis de la pared celular secundaria en un tejido específico. La idea era reducir la obstinación de la pared celular y aumentar el contenido de polisacáridos sin afectar el desarrollo de la planta.
Los investigadores aplicaron el APFL a las plantas de Arabidopsis de modo que la biosíntesis de lignina se desconectó de la pared celular secundaria, entonces se pudo mantener la integridad de los vasos conductores y fueron capaces de producir plantas sanas con lignina reducida y la deposición mejorada de los polisacáridos en las paredes celulares. En otras palabras, los investigadores lograron acumular mas azúcar en plantas mejoradas sin estropearlo con la lignina.
Loque y sus colegas creen que la estrategia APFL que ellos utilizaron para mejorar la deposición de polisacárido en las paredes celulares de sus plantas de Arabidopsis también podría ser rápidamente implementada en otras especies de plantas vasculares. Esto podría aumentar el contenido de la pared celular para el beneficio de la producción de papel y la industria forrajera, así como para aplicaciones de bioenergía. Actualmente están desarrollando nuevas versiones e incluso mejores de estas estrategias.

Interesante, mas celulosa con menos lignina, trataré de averiguar mas acerca de la estrategia APFL. Para mas información "Engineering secondary cell wall deposition in plants" es el título del paper publicado con la investigación.

14 de marzo de 2013

LECHE DE CABRA TRANSGÉNICA ACELERA LA RECUPERACIÓN DE INFECCIONES BACTERIANAS GASTROINTESTINALES


Investigadores de la Universidad de California reportaron que la leche de cabras que han sido modificadas genéticamente para producir niveles más altos de una proteína antimicrobiana humana ha demostrado ser eficaz en el tratamiento de la diarrea en lechones, demostrando el potencial de los productos alimenticios de animales transgénicos para un día también beneficiar la salud humana.
El estudio es el primero en mostrar que la leche de cabra que lleva niveles elevados de lisozima antimicrobiana, una proteína presente en la leche materna humana, puede exitosamente tratar la diarrea causada por una infección bacteriana en el tracto gastrointestinal.
Los resultados ofrecen la esperanza de que la leche pueda eventualmente ayudar a prevenir las enfermedades diarreicas humanas que cada año se cobran la vida de 1,8 millones de niños de todo el mundo y poner en peligro el desarrollo físico y mental de millones más.
Según James Murray, investigador principal del estudio, estos resultados proporcionan un ejemplo de que, a través de la ingeniería genética, se puede ofrecer animales de granja con nuevos rasgos dirigidos a resolver algunos de los problemas de salud que enfrentan muchas regiones en desarrollo del mundo que dependen de la ganadería como la principal fuente de alimentos.
En este estudio, Murray y sus colegas alimentaron lechones con leche de las cabras modificadas genéticamente y que producen en su leche niveles más altos de lisozima, una proteína que se produce naturalmente en las lágrimas, saliva y leche de todos los mamíferos.
Aunque la lisozima se produce a niveles muy altos en la leche materna humana, la leche de cabras y vacas contiene muy poca lisozima, promoviendo el esfuerzo para incrementar los niveles de lisozima en la leche de estos animales mediante modificación genética.
Debido a que la lisozima limita el crecimiento de algunas bacterias que causan infecciones intestinales y diarrea y también alienta el crecimiento de bacterias intestinales beneficiosas, esta proteína es importante por ser uno de los principales componentes de la leche humana que contribuye a la salud y bienestar de niños lactantes.
Los lechones fueron escojidos para este estudio como modelo de investigación porque su fisiología gastrointestinal es bastante similar al de los humanos, y porque los cerdos ya producen una moderada cantidad de lisozima en su leche.
La mitad de los lechones en el estudio fueron alimentados con leche pasteurizada proveniente de las cabras transgénicas con una mayor cantidad de lisozima (68 por ciento del nivel encontrado en la leche materna humana). La otra mitad de los lechones fueron alimentados con leche pasteurizada con muy poca lisozima que venía de cabras no transgénicas.
El estudio encontró que, a pesar de que ambos grupos de lechones se recuperaron de la infección y de la diarrea resultante, los lechones alimentados con la leche rica en lisozima se recuperaron mucho más rápidamente que los lechones que recibieron leche de cabra sin mayores niveles de lisozima. En general, los lechones alimentados con la leche de lisozima estuvieron menos deshidratados, tenían menos inflamación intestinal, sufrieron menos daño a los intestinos y recuperaron su energía más rápidamente que los lechones en el grupo control. Y, los investigadores no detectaron efectos adversos asociados con la leche rica en lisozima.

18 de enero de 2013

INGENIERÍA DE COMBUSTIBLES ALTERNATIVOS CON CIANOBACTERIAS


Anne Ruffing científica estadounidense y colaboradores han diseñado dos cepas de cianobacterias para producir ácidos grasos libres, un precursor de los combustibles líquidos, pero también se ha encontrado que el proceso reduce el potencial de producción de las microalgas.
El combustible de microalgas podría ser una forma de reducir la dependencia de Estados Unidos respecto de la energía extranjera. Tales combustibles serían renovables, ya que son alimentados por la luz solar, podrían reducir las emisiones de dióxido de carbono ya que utilizan la fotosíntesis, y también podrían crear puestos de trabajo en una nueva industria.
Ella ha estado estudiando la conversión directa de dióxido de carbono en biocombustibles por parte de organismos fotosintéticos (Synechococcus elongatus PCC 7942). Ruffing considera a sus estudios como la prueba que demuestra que la producción y excreción de ácidos grasos libres (FFA) es posible mediante la modificación de cianobacterias . Ella quiere identificar los mejores hidrocarburos necesarios para la producción de combustible, la cepa que funcione como mejor modelo para la ingeniería genética, así como los genes necesarios para mejorar la producción de FFA.
Se está usando cianobacterias porque son más fáciles de manipular genéticamente que las algas eucariotas y porque las cianobacterias pueden ser modificadas para crear una variedad de combustibles objetivo. Cianobacterias modificadas genéticamente excretan los FFA y permiten que el combustible sea recolectado sin cosechar las microalgas, en contraste con las algas eucarióticas, en el que la producción de combustible se produce dentro de la célula y por ende se requiere de una cosecha.
En general, así es como funciona el proceso de producción de biocombustible: las algas eucariotas crecen en un estanque a la densidad necesaria, entonces los productores deben deshacerse del agua, recoger las células y romper abrirlos para obtener el precursor dentro de combustible. Este precursor se aísla y purifica y a continuación se convierte químicamente en biodiesel. Las cianobacterias excretan el precursor de combustible fuera de la célula, por lo que en un proceso de separación se puede eliminar el producto sin matar las células. Entonces se elimina la necesidad de hacer crecer un nuevo lote de algas cada vez, se reduce el requerimiento de nitrógeno y fosfato y  además los costos. Sin embargo, los rendimientos actuales de las cepas modificadas son demasiado bajos para la producción a gran escala.
Mientras que otros esfuerzos de investigación se han centrado en las estrategias de ingeniería metabólica para aumentar la producción, Ruffing quiere identificar qué efectos fisiológicos limitan el crecimiento celular y la síntesis de ácidos grasos libres.
Las cepas que se diseñaron para la producción de ácidos grasos libres muestran una reducción en los rendimientos fotosintéticos, degradación de la clorofila a y cambios en los pigmentos captadores de luz. Se observó también muerte celular y menores tasas de crecimiento en general, y se sospecha que la toxicidad de los ácidos grasos libres insaturados y los cambios en la composición de la membrana son responsables.
Ahora se está observando qué genes están cambiando cuando las cianobacterias producen ácidos grasos. Ruffing está creando mutantes silenciando ciertos genes o introduciendo o sobreexpresando genes para ver cómo afectan estos a la célula y a la producción de ácidos grasos.
Los científicos están produciendo FFA de Synechococcus elongatus PCC 7942 y Synechococcus sp. PCC 7002, elegidos como organismos modelo que han sido estudiados durante varias décadas y para las que existen herramientas para manipular sus genes. Sin embargo, creen que es posible que haya una cepa natural por ahí que pueda ser una mejor opción para la producción de biocombustible, por lo que habrá una gran cantidad de exploración que hacer.

6 de enero de 2013

OBTIENEN COMPUESTO ANTICANCEROSO A PARTIR DE ALGAS


Biólogos de la Universidad de California (UC San Diego) han logrado obtener un potente compuesto anticanceroso a partir de un alga denominada Chlamydomonas reinhardtii. Los científicos señalan que este complejo es el mismo que utiliza un medicamento muy caro que se comercializa en la actualidad en tratamientos contra el cáncer. 
El hallazgo abre la puerta para producir proteínas de diseño en grandes cantidades a partir de algas de forma mucho más barata que las obtenidas de células de mamífero, por lo tanto el precio del fármaco fabricado se reduciría de manera drástica.
Según uno de los biólogos, Stephen Mayfield, su método puede ser usado para producir sofisticados fármacos para tratar cáncer y otras enfermedades de manera totalmente novedosa, ya que este tipo de fármacos no se pueden producir mediante bacterias porque son incapaces de plegar las proteínas en formas tridimensionales y tampoco se pueden obtener de células de mamíferos porque las toxinas las matarían.
El desarrollo ha utilizado un alga modificada genéticamente para producir una proteína tridimensional con dos dominios, uno de ellos contiene un anticuerpo que se asocia a una célula cancerosa y otro que tiene una toxina que mata a esa célula, usando un procedimiento mucho más simplificado que el que efectúan las compañías farmacéuticas en la actualidad. 
El avance es la culminación de siete años de trabajo en laboratorio para demostrar que la Chlamydomonas reinhardtii, un alga verde usada ampliamente en biología como modelo genético, puede producir un amplio rango de proteínas terapéuticas en mayor cantidad y de forma más económica que usando bacterias o células de mamífero. 
Mayfield y sus colegas lograron su primer éxito hace cinco años cuando demostraron que podían producir una proteína de suero amiloide de mamífero a partir de algas. Al año siguiente lograron obtener una proteína de anticuerpo humano y en 2010 demostraron que proteínas terapéuticas más complejas como los fármacos de factor de crecimiento endotelial vascular (VEGF), utilizadas para tratar pacientes que sufren enfisema pulmonar, pueden ser producidos también a base de algas. 
En mayo de este año el grupo de Mayfield, en colaboración con un equipo liderado por Joseph Vinetz de la UC San Diego's School of Medicine, obtuvo una proteína con potencial de ser usada como vacuna contra la malaria en el futuro a partir de algas.

27 de diciembre de 2012

MODIFICAN GENÉTICAMENTE UNA ALGA PARA PRODUCIR BIODIÉSEL


Investigadores de la Universidad de Almería (UAL) desarrollan un método de modificación genética para conseguir la transformación de algas, la microalga Scenedesmus almeriensis, para producir biodiésel.
El proyecto pretende introducir en esta alga genes que aumenten la producción del aceite a partir del cual se fabrica biodiésel, ha informado la Oficina de Transferencia de Resultados de Investigación (OTRI) de la Universidad de Almería (UAL) en un comunicado.
Este microorganismo, que presenta un elevado contenido encarotenoides, fue descubierto en el 2005 de forma casual por un grupo de científicos de la UAL y la estación Experimental de Cajamar de "Las Palmerillas" durante un proyecto de investigación sobre producción de microalgas en biorreactores.
Además de la alta presencia de carotenoides, especialmente luteína, la Scenedesmus almeriensis tiene una importante resistencia a condiciones extremas (soporta temperaturas superiores a 37 grados), ritmo de crecimiento alto y gran productividad por hectárea.
Estas características han permitido la realización de un estudio financiado por la convocatoria de excelencia de la Junta de Andalucía, que ha utilizado la bacteria Agrobacterium tumefaciens para modificar genéticamente la microalga, con un resultado positivo cercano al 70% en las muestras obtenidas.
No se trata de ensayos de laboratorio a pequeña escala donde todo está controlado, sino que se trata de reproducir el alga a gran escala (miles de litros) bajo condiciones variables como la luz solar natural o temperatura según la climatología.
Esto supone la posibilidad de generar cientos de clones de microalgas en los que poder introducir genes que incrementen la producción de aceite.

19 de diciembre de 2012

UTILIZAN ALGAS DE AGUA DULCE PARA CREAR UNA BIOLÁMPARA QUE SE ENCIENDE POR SI SOLA


Es bien sabido que gran cantidad de especies, sobre todo marinas, generan luz, entre ellas, bacterias, hongos, gusanos, moluscos, crustáceos, insectos, equinodermos y peces.
Algunas algas también pueden hacerlo, como la Synechocystis PCC 6803, escogida por un grupo de estudiantes para crear Luxilla, una lámpara que funciona sin necesidad de electricidad y que emite luz sólo por la noche. La lámpara se recarga con la fotosíntesis natural de la planta, es decir, en el día recibe la luz solar y produce el sustrato necesario para brillar la noche siguiente.
El grupo liderado por Bernardo Pollak en Chile recolectó las algas desde un lago, y con el proyecto participaron en el mundial de Biología Sintética y hoy trabajan en desarrollar la producción para que el sistema sea autónomo, además de evaluar cuánta luz puede emitir el sistema para ver cómo optimizar y aumentar esa característica.
La bioluminiscencia depende de la producción de unas proteínas que generan la reacción química que produce luz (fotones) como subproducto. Genes fueron introducidos a las algas y acoplados a su propio ciclo circadiano, de manera que la bioluminiscencia se produzca sólo después del ocaso y la lámpara se prenda sola.
Como se trata de algas, sólo requieren luz para alimentarse, a diferencia de otros proyectos creados con anterioridad, donde se utilizaban bacterias que necesitaban metano para vivir. Otra característica que la diferencia es que no sólo está pensada como un prototipo o como pieza de diseño, sino que la imaginan incluso en pasillos y aceras. 
La propuesta pretende generar iluminación pasiva para sectores que no requieren de alta luminosidad, aunque siempre cabe la posibilidad de que sea ornamental, dado que en sí la bioluminiscencia es un fenómeno visualmente llamativo e intrigante.