"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta PROTEÍNAS. Mostrar todas las entradas
Mostrando entradas con la etiqueta PROTEÍNAS. Mostrar todas las entradas

9 de febrero de 2015

CIENTÍFICOS LOGRAN REPROGRAMAR PLANTAS PARA QUE SEAN MAS TOLERANTES A LA SEQUÍA MEDIANTE BIOLOGÍA SINTÉTICA.

La investigación liderada por la Universidad de California-Riverside en biología sintética ofrece un método que reprograma plantas para que consuman menos agua después de ser expuestos a un producto agroquímico, abriendo nuevas puertas para el mejoramiento de cultivos.
Los cultivos y otras plantas se enfrentan constantemente a las condiciones adversas del medio ambiente, tales como el aumento de las temperaturas y la disminución de los suministros de agua dulce, los cuales reducen la producción y le cuesta a los agricultores miles de millones de dólares anuales.
La sequía es un importante factor de estrés ambiental que afecta el crecimiento y desarrollo de las plantas. Cuando las plantas se encuentran con la sequía, ellas naturalmente producen ácido abscísico (ABA), una hormona del estrés que inhibe el crecimiento de la planta y reduce el consumo de agua. Específicamente, la hormona activa un receptor (proteína especial) en las plantas como si fuera una mano que encaja en un guante, lo que resulta en cambios beneficiosos tales como el cierre de los estomas, para reducir el agua perdida ayudando a las plantas a sobrevivir.
Si bien es cierto que los cultivos podrían ser rociados con ABA para ayudar a su supervivencia durante una sequía, el ABA es costoso hacer, se inactiva rápidamente en el interior de las células vegetales y es sensible a la luz, y por lo tanto no se le ha encontrado una utilidad mucha directa en la agricultura. Varios grupos de investigación están trabajando para desarrollar imitadores sintéticos del ABA para modular la tolerancia a la sequía, pero una vez descubiertos estos imitadores se espera que estos enfrenten largos y costosos procesos de desarrollo.
La mandipropamida agroquímica, sin embargo, ya se usa ampliamente en la producción agrícola para controlar las plagas de los cultivos de frutas y hortalizas. ¿Podrían los cultivos amenazados por la sequía ser diseñados para responder a la mandipropamida como si se tratara del ABA, y por lo tanto mejorar su supervivencia durante la sequía? Sí, según un equipo de científicos, dirigido por Sean Cutler de la Universidad de California-Riverside.
Los investigadores trabajaron con Arabidopsis y la planta del tomate. En el laboratorio, ellos utilizaron métodos biológicos sintéticos para desarrollar una nueva versión de los receptores del ácido abscísico de estas plantas, diseñados para ser activados por la mandipropamida en lugar del ABA. Los investigadores demostraron que cuando las plantas reprogramadas eran rociadas con mandipropamida, estas sobrevivían efectivamente a las condiciones de sequía mediante la activación de la ruta del ácido abscísico, que cierra los estomas en sus hojas para evitar la pérdida de agua.
El hallazgo pone de manifiesto el poder de los métodos de biología sintética para la manipulación de los cultivos y abre nuevas puertas para el mejoramiento de cultivos que podrían beneficiar a una población mundial en crecimiento.
Sean Cutler comenta que el reutilizar con éxito un producto agroquímico para una nueva aplicación mediante la ingeniería genética de un receptor vegetal no se había hecho antes. Ellos anticipan que este método de reprogramación de respuestas vegetales utilizando la biología sintética permitirá a otros agroquímicos controlar otras características útiles tales como las tasas de resistencia a enfermedades o de crecimiento.
Cutler explicó que descubrir un nuevo producto químico y luego tener que evaluarlo y aprobarlo para su uso es un proceso extremadamente engorroso y costoso que puede tomar años. Mediante la biología sintética se tiene eludido este obstáculo pues en esencia, como se ve en este trabajo, ellos tomaron algo que ya funciona en el mundo real y reprogramaron una planta de modo que el químico pudo controlar el uso del agua.
La ingeniería de proteínas es un método que permite la construcción sistemática de muchas variantes de proteínas probándolas también para ver nuevas propiedades. Cutler y sus colaboradores utilizaron la ingeniería de proteínas para crear receptores vegetales modificados en las que la mandipropamida podría encajar y potentemente causar la activación del receptor. El receptor diseñado se introdujo en Arabidopsis y en plantas de tomate, que luego respondieron a la mandipropamida como si estuvieran siendo tratadas con ABA. En ausencia de la mandipropamida, estas plantas mostraron diferencias mínimas en comparación con las plantas que no poseen proteínas modificadas.

24 de enero de 2015

AVANCES EN LA COMPRENSION DE LAS INTRINCADAS REDES REGULADORAS DE LOS GENES QUE CONTROLAN EL ENGROSAMIENTO DE LA PARED CELULAR VEGETAL PODRÍAN LLEVAR A MEJORAR LA EFICIENCIA EN LA PRODUCCIÓN DE BIOCOMBUSTIBLES

Unos genetistas especializados en plantas que incluyen a Sam Hazen de la Universidad de Massachusetts Amherst, y Siobhan Brady de la Universidad de California, han resuelto las redes reguladoras de los genes que controlan el engrosamiento de la pared celular por la síntesis de tres polímeros, la celulosa, la hemicelulosa y la lignina.
Los autores dicen que el más rígido de los polímeros, la lignina, representa un gran obstáculo para extraer los azúcares de la biomasa vegetal que pueden ser utilizados para producir biocombustibles. Se espera este avance sirva como base para la comprensión de la regulación de un componente vegetal integral y complejo (pared celular) y como un mapa de cómo los futuros investigadores podrían manipular los procesos formadores de polímeros para mejorar la eficiencia de la producción de biocombustibles.
Los tres polímeros claves, que se encuentran en tejidos vegetales conocidos como xilema, proporcionan a las plantas resistencia mecánica y de células resistentes al agua que transportan el liquido elemento. Trabajando en la planta modelo Arabidopsis thaliana, Hazen, Brady y sus colegas exploraron cómo un gran número de factores de transcripción interconectados regulan el engrosamiento del xilema y de la pared celular.
Entender cómo se controlan las proporciones relativas de estos biopolímeros en el tejido vegetal abriría oportunidades para rediseñar las plantas para el uso de biocombustibles.En este estudio se identificaron cientos de nuevos reguladores los cuales ofrecen una importante visión de la regulación del desarrollo de la diferenciación de las células del xilema.
En concreto, usando una serie de sistemas para identificar las interacciones proteína-DNA, ellos realizaron el barrido de más de 460 factores de transcripción expresados en el xilema de la raíz para explorar su capacidad de unirse a los promotores de unos 50 genes que se sabe están involucrados en los procesos que producen los componentes de la pared celular. Hazen indica que esto reveló una red altamente interconectada de más de 240 genes y más de 600 interacciones proteína-DNA que no se habían conocido antes.
Ellos también encontraron que cada gen de la pared celular en la red reguladora del xilema está unido a un promedio de cinco factores de transcripción diferentes de 35 familias distintas de proteínas reguladoras. Además, muchos de los factores de transcripción forman un número sorprendentemente grande de bucles feed-forward que coregulan los genes diana.
En otras palabras, en lugar de una serie de interruptores de encendido y apagado que conduce a una acción final como la fabricación de celulosa, la mayoría de las proteínas, incluyendo los reguladores del ciclo celular y la diferenciación se unen directamente a los genes de celulosa y a otros reguladores de la transcripción. Esto le da a las plantas un gran número de posibles combinaciones para responder y adaptarse al estrés ambiental, tales como la sal o la sequía, señalan los autores.
Aunque este estudio pudo identificar nodos interactivos, las técnicas utilizadas no fueron capaces de permitir a los autores determinar exactamente que tipos de bucles fee-forward están presentes en la red de regulación del xilema. Sin embargo, el trabajo ofrece un marco para futuras investigaciones que deberian permitir a los investigadores identificar maneras de manipular esta red y diseñar cultivos energéticos para la producción de biocombustibles.

29 de diciembre de 2014

LOGRAN PRODUCIR TRECE NUEVOS TERPENOS EN STREPTOMYCES MEDIANTE EL ANÁLISIS DE BASES DE DATOS DE GENOMAS DE UN GRUPO DE BACTERIA

Los terpenos son compuestos aromáticos responsables de los diferentes aromas de los aceites esenciales de las plantas y de las resinas de los árboles. Desde el descubrimiento de los mismos hace más de 150 años, los científicos han aislado unos 50.000 diferentes compuestos terpénicos derivados de plantas y hongos. Las bacterias y otros microorganismos son conocidos también por hacer terpenos, pero han recibido mucho menos atención.
Una nueva investigación de la Universidad de Brown, Estados Unidos, muestra que la capacidad genética de las bacterias para hacer terpenos está muy extendida. Usando una técnica especializada para tamizar a través de las bases de datos genómicas de una variedad de bacteria, los investigadores encontraron 262 secuencias de genes que probablemente codifican para terpeno sintasas (enzimas que catalizan la producción de terpenos). Luego, los investigadores utilizaron varias de aquellas enzimas para aislar 13 terpenos de origen bacteriano no identificados previamente. Los hallazgos sugieren que las bacterias representan una fuente fértil para el descubrimiento de nuevos productos naturales.
David Cane, profesor de química en la Universidad de Brown, comenzó a trabajar hace unos 15 años para entender cómo las bacterias hacen terpenos. En ese momento, las primeras secuencias genómicas de ciertas clases de bacterias estaban empezando a salir. Cane y sus colegas tuvieron la idea de encontrar las enzimas responsables de producir terpenos mirando las secuencias de los genes que estaban siendo descubiertas.
Para ello, Cane buscó a través de los datos genómicos recopilados para un grupo de bacterias llamadas Streptomyces, en busca de secuencias similares a las conocidas que expresan la terpeno sintasas en plantas y hongos. Finalmente, se encontró que, efectivamente, los Streptomyces tienen genes que codifican terpeno sintasas y que esas enzimas podrían ser utilizadas para hacer terpenos.
Las secuencias bacterianas verificadas que encontró Cane permitieron a otros investigadores refinar las búsquedas posteriores de genes adicionales de terpeno sintasas utilizando las secuencias bacterianas como consulta de búsqueda en vez de las secuencias de plantas o secuencias de hongos, lo que debería dar un mayor grado de similitud.
El siguiente paso fue verificar que estas secuencias, efectivamente codifican para enzimas capaces de hacer terpenos. Probar todos los 262 genes no era práctico, por lo que el equipo eligió algunos que podrían darles la mejor oportunidad de encontrar compuestos terpénicos que anteriormente no habían sido identificados. Buscaron secuencias que no parecen encajar claramente en categorías previamente conocidas de terpenos.
Después de haber seleccionado unos cuantos, el equipo hizo uso de una bacteria Streptomyces genéticamente modificada como una biorefinería para generar terpenos. En dicha bacteria se eliminaron los genes que son responsables de producir la mayoría de sus productos nativos, pero dejaron detrás toda la capacidad para proporcionar los materiales de partida y manejar la acumulación de productos.
Al tomar algunas de las secuencias de genes que encontraron y empalmándolos en su organismo de ensayo, los investigadores pudieron dejar que las Streptomyces generen el producto usando las instrucciones del nuevo gen introducido. Usando este método, fueron capaces de producir 13 terpenos previamente desconocidos, cuyas estructuras se verificaron por espectrometría de masas y espectroscopia de resonancia magnética nuclear.
Cane comenta que es un gran paso hacia adelante en el área, ya que proporciona un paradigma de cómo se puede descubrir muchas sustancias nuevas; también es un buen ejemplo de cómo se puede utilizar el análisis de secuencias para identificar genes de interés y luego aplicar técnicas genéticas, moleculares y microbiológicas para producir sustancias químicas de interés. El trabajo también sugiere que puede haber muchos productos terpénicos nuevos escondidos y aún por descubrir en los genomas de bacterias.

14 de noviembre de 2014

PLANTEAN LA POSIBILIDAD DE UTILIZAR UNA PROTEÍNA MODIFICADA DE LA REMOLACHA COMO SOLUCIÓN A ENFERMEDADES RELACIONADAS CON LA SANGRE Y COMO ALTERNATIVA A LA TRANSFUSIÓN SANGUÍNEA

Un nuevo estudio realizado en Suecia sugiere que una proteína que se encuentra en la remolacha de azúcar podría ser utilizado como un sustituto de la sangre para ayudar a hacer frente a la escasez de sangre sufrida en la actualidad. 
La hemoglobina es la proteína que transporta el oxígeno en la sangre, y el equipo de investigadores asegura que las versiones del ser humano y de las plantas son muy parecidas. Los investigadores están comprobando si pueden volver a empaquetar la proteína vegetal de manera que pueda ser aceptada por el tejido humano.
Las transfusiones de sangre pueden ayudar a muchas personas en situaciones de emergencia en las que han perdido una gran cantidad de sangre, y también a aquellos que necesitan tratamientos a largo plazo, como puede ser el cáncer y otras enfermedades relacionadas con la sangre. El trabajo de los científicos de la Universidad de Lund está basado en un estudio anterior que encontró que la hemoglobina tiene un papel importante en el desarrollo de las plantas.
El profesor Bulow y la profesora Nélida Leiva, de la Universidad de Lund, en Suecia, querían encontrar una solución a la escasez de sangre. En el estudio se demostró que la hemoglobina de las plantas comparten el 50-60% de similitud con el tipo que se encuentra en la sangre humana, pero es mas robusta.
Leiva, quien estaba al frente del estudio, planteaba dos grandes posibilidades. Por un lado, la adaptación de la hemoglobina de la planta para que sea viable en seres humanos; y por el otro, el uso de las plantas como herramientas para producir hemoglobina humana. La hemoglobina de la planta se comporta de manera similar a una versión que se encuentra en el cerebro humano, y además tiene una estructura similar.
El siguiente paso sería desarrollar la hemoglobina para ver si puede ser aceptada por conejillos de indias, y más tarde en tejido humano, lo que podría suceder en tres años. El Profesor Denis Murphy, jefe de la genómica y la biología computacional en la Universidad de Gales del Sur, dijo que aunque sabemos desde hace varias décadas que las plantas producen proteínas como la hemoglobina, este estudio muestra que son más comunes y están involucrados en más procesos fisiológicos de los que se pensaba antes. También dijo que la idea de usar la proteína vegetal para sustituir a la hemoglobina humana era especulativa y podría ser una perspectiva a largo plazo.

26 de septiembre de 2014

LOGRAN PRODUCIR EN BACTERIAS UN MATERIAL ADHESIVO MUY FUERTE INCLUSO BAJO EL AGUA A PARTIR DE UNA MEZCLA COMPLEJA DE PROTEÍNAS BACTERIANAS Y PROTEÍNAS DEL BISO DEL MEJILLÓN

Los mariscos tales como mejillones y percebes secretan proteínas muy pegajosas que les ayudan a adherirse a las rocas o los cascos de los barcos incluso bajo el agua. Inspirado por estos adhesivos naturales, un equipo de ingenieros del MIT ha diseñado nuevos materiales adhesivos que podrían ser usados para reparar barcos o ayudar a curar heridas e incisiones quirúrgicas. 
Para crear sus nuevos adhesivos resistentes al agua, los investigadores del MIT diseñaron bacterias que produzcan un material híbrido que incorpora las proteínas pegajosas del mejillón, así como una proteína bacteriana que se encuentra en las biopelículas (capas viscosas formadas por las bacterias que crecen en una superficie). Cuando se combinan, estas proteínas forman adhesivos incluso más fuertes bajo el agua que las secretadas por los mejillones. 
Este proyecto representa un nuevo tipo de enfoque que puede ser explotado para sintetizar materiales biológicos con múltiples componentes, utilizando bacterias como pequeñas fábricas.
El profesor asociado de ingeniería biológica, ingeniería eléctrica y ciencias de la computación,Timothy Lu, comenta que el objetivo final es elaborar una plataforma en donde se pueda empezar a construir materiales que combinen múltiples dominios funcionales y ver si mejoran el rendimiento de los materiales adhesivos.
La sustancia pegajosa que ayuda a los mejillones a que se adhieren a las superficies submarinas está hecho de varias proteínas conocidas como proteínas del biso del mejillón. Los científicos han modificado previamente la bacteria E. coli para producir proteínas individuales del biso, pero estos materiales no captan la complejidad de los adhesivos naturales. En un nuevo estudio, el equipo del MIT quería diseñar bacterias para producir dos diferentes proteínas del biso, combinadas con proteínas bacterianas llamadas fibras curli (proteínas fibrosas que pueden agruparse y ensamblarse así mismas en mallas mucho más grandes y complejas).
El equipo diseñó bacterias de modo que pudieran producir proteínas que consistieran en fibras curli unidas a la proteína 3 o a la proteína 5 del biso. Después de purificar estas proteínas de las bacterias, los investigadores las dejaron incubar y formar densas mallas fibrosas. El material resultante tiene una estructura regular y flexible que se une fuertemente a las dos superficies secas y mojadas.
Los investigadores probaron los adhesivos usando microscopía de fuerza atómica (una técnica que explora la superficie de una muestra con una pequeña punta). Ellos encontraron que los adhesivos se unían fuertemente a las puntas hechas de tres materiales diferentes: sílice, oro y poliestireno. Los adhesivos ensamblados a partir de cantidades iguales de proteína 3 y proteína 5 forman adhesivos más fuertes que las que tienen una relación diferente, o sólo una de las dos proteínas.
Los investigadores dicen que estos adhesivos también son más fuertes que los adhesivos naturales del mejillón, y son los más fuertes de inspiración biológica hasta la fecha.
Usando esta técnica, los investigadores pudieron producir sólo pequeñas cantidades de adhesivo, por lo que ahora están tratando de mejorar el proceso y generar grandes cantidades del mismo. También planean experimentar con la adición de algunas de las otras proteínas del biso del mejillón para aumentar la fuerza de adhesión aún más y mejorar la robustez del material.
Ademas, el equipo tiene planeado tratar de crear "pegamentos vivientes" que consisten en películas de bacterias que podían sentir el daño a una superficie y luego repararlo mediante la secreción de un adhesivo.

9 de septiembre de 2014

UN PROMETEDORA NUEVA VACUNA SE MUESTRA COMO UN POTENTE INMUNIZADOR CONTRA LA TUBERCULOSIS Y LA LEPRA

En muchas partes del mundo, la lepra y la tuberculosis viven lado a lado. A nivel mundial hay aproximadamente 233.000 casos nuevos de lepra por año, con casi la totalidad de ellos ocurriendo donde la tuberculosis es endémica.
La vacuna centenaria BCG, disponible actualmente, ofrece sólo una protección parcial tanto contra la tuberculosis como contra la lepra, así que se necesita una vacuna más potente para combatir ambas enfermedades. La investigación dirigida por la UCLA puede que haya encontrado un arma más potente contra ambas enfermedades. 
Los investigadores encontraron que rBCG30, una variante recombinante de BCG que sobreexpresa una proteína muy abundante de 30kDa de la bacteria de la tuberculosis conocida como Antígeno 85B, es superior a la BCG en la protección contra la tuberculosis en modelos animales, y también ofrece una protección cruzada contra la lepra. Además, encontraron que reforzando rBCG30 con la proteína Antígeno 85B, una proteína expresada también por el bacilo de la lepra, proporciona una protección considerablemente más fuerte contra la lepra. 
El Dr. Marcus A. Horwitz, profesor de medicina y microbiología, inmunología y genética molecular, y el autor principal del estudio comenta que este es el primer estudio que demuestra que una vacuna mejorada contra la tuberculosis también ofrece protección cruzada contra Mycobacterium leprae, el agente causante de la lepra, lo que significa que esta vacuna es prometedora para una mejor protección contra dos importantes enfermedades al mismo tiempo. Agregó además que también es el primer estudio que demuestra que reforzando una vacuna BCG recombinante mejora aún más la protección cruzada contra la lepra. 
En un primer experimento, unos ratones fueron inmunizados o con la vacuna rBCG30 o con la vacuna BCG, o por el contrario se les dio una solución de sal. Diez semanas después, los ratones fueron inyectados con bacterias vivas de la lepra en las almohadillas de las patas y siete meses después de eso, se midió el número de bacterias de la lepra en en esa parte de las patas. Los investigadores encontraron que los ratones que recibieron BCG o rBCG30 tenían mucho menos bacterias de la lepra en sus almohadillas que los ratones que recibieron la solución salina. Además, los ratones inmunizados con rBCG30 tuvieron significativamente menos bacterias de la lepra que aquellos vacunados con BCG
En un segundo experimento, los ratones se inmunizaron primero con BCG o rBCG30, y luego inmunizados con una vacuna de refuerzo (r30) que consiste en la proteína Antígeno 85B de 30kDa de la bacteria de la tuberculosis en adyuvante, es decir, en una formulación química que aumenta la respuesta inmune. El grupo de ratones inmunizados con rBCG30 y reforzado con R30 no tenían bacterias de la lepra detectables en sus almohadillas, en contraste con los grupos de ratones inmunizados con todas las otras vacunas probadas, incluyendo BCG y rBCG30 a solas y BCG reforzado con r30.
En otros experimentos, se midieron las respuestas inmunes de los ratones después de la vacunación. Los ratones inmunizados con rBCG30 y reforzado con r30 habían mejorado notablemente la respuesta inmune a la versión del Antígeno 85B de la bacteria de la lepra (que es muy similar a la expresada por el bacilo de la tuberculosis) en comparación con los ratones inmunizados con las otras vacunas ycon las combinaciones de las mismas.
Un ensayo en humanos en Fase 1 para rBCG30 ha demostrado que es segura y significativamente más eficaz que la BCG, y es la única vacuna de reemplazo candidata para BCG probado hasta el momento para satisfacer ambos criterios clínicos clave. Sin embargo, Horwitz señaló que este estudio más reciente, con respecto a la lepra, se llevó a cabo en un modelo animal, por lo que se necesitan más estudios para evaluar la eficacia de la vacuna rBCG30 en la protección contra la lepra en humanos. El siguiente paso en la investigación será probar la eficacia de la vacuna rBCG30 contra la tuberculosis en humanos. Si es eficaz contra la tuberculosis, entonces el siguiente paso sería probar su eficacia contra la lepra.

2 de mayo de 2014

AVANCES IMPORTANTES EN EL ENTENDIMIENTO DE LA SIMBIOSIS RHIZOBIUM-LEGUMINOSAS PARA SU FUTURA APLICACIÓN BIOTECNOLÓGICA

Es bien sabido que en los nódulos de las raíces de las leguminosas se encuentran bacterias, por lo general los miembros del género Rhizobium, que rompen el fuerte enlace triple entre las moléculas de nitrógeno en el aire y  vuelven a empaquetar los átomos de nitrógeno en compuestos químicos que la planta puede utilizar. A cambio, la planta suministra a las bacterias con la energía necesaria en forma de azúcar para dividir las moléculas de nitrógeno.
Las asociaciones leguminosas-rhizobium generan más nitrógeno para las plantas que todos los fertilizantes industriales utilizados en la actualidad, y proporcionan la cantidad adecuada de nitrógeno en el momento adecuado.
Por el contrario, la mayor parte del fertilizante sintético aplicado a los campos agrícolas se desperdicia, mojando el suelo y yendo hacia los cursos de agua o evaporándose a la atmósfera en forma de óxido nitroso, convirtiéndose en un riesgo ambiental y un riesgo para la salud.
Los agricultores ya pueden comprar biofertilizantes ricos en rhizobium para aumentar la formación de nódulos y mejorar la calidad del suelo sin fertilizantes sintéticos. Pero los científicos están comenzando a hablar de cultivar plantas de reingeniería para que, como las leguminosas, tengan los sistemas de fijación de nitrógeno, ya sea como nódulos en las raíces o en las propias células de la planta.
Para ello, los científicos necesitan entender los mecanismos biológicos de fijación de nitrógeno tan a fondo como un mecánico entiende las válvulas y pistones del motor de un coche. La diferencia es que la maquinaria biológica es demasiado pequeña para ser visible a simple vista.
La ciencia dio un paso más cerca a este objetivo hace poco, cuando un equipo de la Universidad de Washington en St. Louis elaboró ​​la estructura de una proteína llamada NolR que actúa como un interruptor maestro de apagado para el proceso de nodulación. Mediante la construcción de un modelo atómico exacto de la proteína, ellos fueron capaces de ver exactamente cómo reconoce y encaja éste en los genes para evitar que las bacterias se embarquen en una vida como simbionte.
El proceso de nodulación es muy raro. En primer lugar, las plantas y las bacterias  del suelo se involucran en un diálogo molecular para asegurarse de que son socios compatibles. La planta huésped libera un cóctel de sustancias químicas llamadas flavonoides que son percibidos por una proteína bacteriana llamada NodD, el cual activa los genes nod (de nodulación). Juntos, los genes nod expresan una molécula grande y compleja llamada factor nod.
El factor nod desencadena en la planta la facultad para que esta cree un circuito de infección, o un tubo a través del cual las bacterias se desplazan profundamente en la raíz , en donde están envueltos en una membrana que la planta ha sintetizado y secuestrado en vesículas dentro de las células de la corteza de la raíz de un nódulo. El metabolismo de estas bacterias e incluso su capacidad de reproducción están tan alterados que son como diferentes organismos, por ello son llamados bacteroides en lugar de bacterias.
Los científicos que trabajaron en la genética de la formación de nódulos en la década de los 80s y principios de los 90s, identificaron a NodD, un interruptor maestro de encendido para los genes nod, y a NolR, un interruptor maestro de apagado que actúa incluso en términos más generales, apagando los genes nod , NodD, y otros genes necesarios para la vida como un simbionte.
Segun Joseph Jez, PhD y profesor asociado de biología en Artes y Ciencias de la Universidad de Washington, las bacterias tienen la capacidad de activar un montón de genes para la nodulación y la simbiosis, pero es necesario mantenerlos apagados el tiempo en que son de vida libre y ese es el papel que cumple la proteína NolR.
El trabajo que llevan a cabo estos cientificos consiste en averiguar cómo se pliega la larga y filiforme molécula de proteína en sí misma para formar una maraña de hélices y cintas, y luego cómo la molécula plegada cabe en el ADN y se une con él.
Desafortunadamente, el plegamiento de las proteínas es un problema notoriamente difícil, uno aún más allá del alcance de los cálculos por ordenador. Así que la mayoría de las estructuras proteicas están siendo resueltas por cristalización de la proteína y luego irradiación del cristal con rayos X para localizar los átomos dentro de él.
Jez y luego Lee tomaron el reto de cristalizar la proteina NolR. Lee decidió empezar por el principio eligiendo una secuencia de ADN unida a NolR, ordenando ese corte de ADN, y luego tratando de cristalizar la mezcla de la proteína y el ADN juntos.
Esto debería haber sido más difícil que la cristalización de la proteína sola , pero, para su sorpresa, resultó ser más fácil. Los datos de baja resolución que Lee obtuvo del complejo proteína-ADN hizo más fácil para los científicos interpretar los datos de alta resolución de la proteína sola.
La proteína resultó tener lo que se llama un motivo hélice-giro-hélice que se encuentra comúnmente en las proteínas que se unen al ADN. La doble hélice de ADN tiene un surco mayor y surco menor que corren por la doble hélice como las roscas de un tornillo. Muchas proteínas que se unen al ADN  lo hacen a través del surco mayor más amplio.
El surco mayor es el que está abierto, y se puede ajustar una hélice de proteínas en ese surco. La naturaleza utiliza este dominio hélice-giro-hélice como una forma de posicionar las hélices en los surcos mayores. La proteína es un dímero, por lo que tiene dos hélices que están separadas perfectamente para ponerse una en cada uno de los dos surcos mayores consecutivos.
Para actuar como un interruptor maestro, la NolR tiene que ser capaz de reconocer y unirse a muchos genes diferentes. Es capaz de hacer eso porque cada uno de los genes lleva la misma secuencia de nucleótidos, llamada una secuencia de consenso, en algún lugar a lo largo de su longitud. En este caso, hay dos de tales secuencias en los surcos mayores consecutivos en todos los genes a los que NolR se une.
Los científicos están satisfechos con su progreso , pero sólo les ha hecho tener más ganas de cristalizar la otra proteína : el interruptor maestro de encendido, NodD.

31 de marzo de 2014

DESCUBREN UNA PROTEÍNA QUE PERMITE AUMENTAR LA COSECHA DE TOMATE EN CONDICIONES DE LABORATORIO

Investigadores argentinos y brasileros descubrieron una proteína que permite duplicar el índice de cosecha en plantas de tomate en condiciones de laboratorio mediante la producción de frutos más pesados y en mayor cantidad.
Se trata del producto de un gen que regula el envío de azúcares desde las hojas a los frutos. Así, el descubrimiento de la función de la proteína SPA (Sugar Partition Affecting) abre las puertas al desarrollo de nuevas estrategias para el aumento de la producción de alimentos, señaló la autora principal del trabajo, Luisa Bermúdez.
Por su parte, el investigador adjunto del CONICET (Argentina) y jefe del grupo de genómica estructural y funcional de especies de Solanáceas del Instituto de Biotecnología del INTA Castelar, Fernando Carrari, agregó que este descubrimiento es un aporte modesto al entendimiento de la funcionalidad del genoma de esta especie ya que se trata de entender el rol de un solo gen que, en términos agronómicos, pareciera tener una función importante ya que modifica parámetros productivos.
Al silenciar el gen, la eficiencia en la exportación de azúcares desde las hojas hacia los frutos se duplica ya que, al utilizar los mismos recursos por hectárea (fertilizantes, agroquímicos, riego, etc.), su rendimiento aumenta considerablemente.
Según explicó la investigadora del CONICET que se desempeña en el INTA Castelar, luego de la fotosíntesis, la cantidad de sacarosa que llega a los frutos es regulada, entre otros mecanismos, por complejos proteicos en los cuales participa la SPA y, si bien hay muchos otros factores que afectan este transporte, lo que se vio es que cuando se altera los niveles de esta proteína en tomate, ese pasaje se ve afectado.
De esta manera, cuando los investigadores lo silenciaron se dieron cuenta de que se desarrollaban mayor cantidad de frutos que en las plantas donde estaba expresado.
Esta funcionalidad, o falta de ella, podría ser de gran utilidad para los productores que buscan incrementar cada vez más la eficiencia de los cultivos mediante distintas estrategias relacionadas con el manejo del suelo, la utilización de agroquímicos y las mejoras genéticas.
Bermúdez destacó que estas actividades, al margen de aumentar la producción, alcanzan un punto en el que la cantidad de insumos deja de ser limitante ya que genéticamente estas plantas están programadas para producir una determinada cantidad de frutos.
Por ello, el análisis funcional de los genomas, en combinación con estrategias de ingeniería genética, buscan identificar factores clave relacionados con la calidad y el rendimiento, con el fin de mejorar las especies que se cultivan actualmente a partir de la alteración de genes que ya se encuentran presentes en esa especie, por lo que no son consideradas transgénicas.
En este sentido, sólo en el tomate se conocen hasta hoy cerca de 130 genes candidatos que se encuentran asociados con caracteres de interés agronómico y el equipo de trabajo argentino-brasilero se concentró en los que estaban más relacionados con una mayor productividad y mejor calidad nutricional.
Pero también descubrieron que el gen que produce la proteína SPA estaba relacionado con otros procesos que determinan cuánto carbono fijado por la planta se exporta a los frutos y cuánto es utilizado en los tejidos fotosintéticos.
Actualmente, los equipos argentino y brasilero trabajan en la generación de una patente que les permita probar la existencia y eficacia de esta proteína en ensayos a campo. En este sentido, Bermúdez manifestó que lo esperable es que en esas condiciones las plantas se comporten de la misma manera que lo hicieron en las pruebas de laboratorio ya que la función de la proteína no parece estar directamente relacionada con factores abióticos.
Por último, la investigadora aclaró que, si bien aún no se han realizado pruebas organolépticas sobre los frutos, se observó que algunos contenidos de azúcares se modificaron en los frutos, por lo cual esto podría redundar, a su vez, en tomates con gusto diferencial

24 de enero de 2014

PROTEÍNAS MODIFICADAS GENÉTICAMENTE COMO POSIBLES VACUNAS CONTRA LA ALERGIA AL MELOCOTÓN

Una investigación, llevada a cabo por el Centro de Biotecnología y Genómica de Plantas (UPM-INIA) y dirigido por Araceli Díaz Perales, ha estudiado la alergia al melocotón, la alergia alimentaria más común , y la proteína de Pru p 3. Como resultado de este trabajo de investigación, se han desarrollado tres variantes hipoalergénicas de esta proteína. Todos pueden ser buenos candidatos para el uso de la inmunoterapia específica para la alergia al melocotón y también pueden ser utilizados como una vacuna.
Hoy en día, la alergia afecta a más del 25 % de la población de los países desarrollados. Actualmente, el tratamiento de la alergia a los alimentos consiste en evitar la ingesta de estos alimentos. Sin embargo , la posibilidad de reactividad cruzada (reacción a los alimentos relacionados) hace que esta práctica sea ineficaz.
La inmunoterapia específica es el único tratamiento para prevenir los signos más graves de la progresión de la alergia. La inmunoterapia consiste en la ingesta de dosis crecientes de extractos de alergenos a pacientes afectados. Sin embargo, el uso de este extracto podría inducir reacciones anafilácticas o conducir a la sensibilización a nuevos alergenos que se encuentran en la mezcla. De acuerdo con esto, el uso de moléculas hipoalergénicas, con menor capacidad de unirse a anticuerpos pero con la capacidad de estimular el sistema inmune, sería una herramienta útil para la inmunoterapia.
La alergia alimentaria más común en España y en el área mediterráneas es la alergia al melocotón, que es causada principalmente por las Pru p 3 proteínas. El tratamiento actual de esta alergia consiste en evitar el consumo de melocotón, ni frescas ni procesadas. Como alternativa, esta investigación ha definido las regiones de esta proteína alergénica que está implicada en la unión a anticuerpos y la estimulación de las células del sistema inmune. Después de eso, los investigadores desarrollaron tres variantes hipoalergénicas de esta proteína que se puede utilizar como una vacuna.
Estas variantes son el resultado de la modificación de epítopes (regiones de unión a anticuerpos) de esta proteína y se utilizaron en una investigación con un paciente alérgico al melocotón con el fin de confirmar su capacidad de estimulación del sistema inmune. Cada variante tiene una modificación diferente que fue diseñada mediante el uso de herramientas genéticas. Aunque la variante 1 (Pru p 3.01) mostró actividad alergénica muy similar con la proteína natural, la variantes Pru p 3.02 y Pru p 3.03 presentaron menor capacidad para unirse a anticuerpos. Además, esta ultimas mantuvieron su capacidad de estimular las células del sistema inmunológico (linfocitos) de los pacientes alérgicos al melocotón durante los ensayos in vitro.
Los resultados muestran que estas dos moléculas (Pru p 3,02 y Pru p 3,03) podrían ser buenos candidatos para el uso de la inmunoterapia específica para la alergia al melocotón.
Este trabajo de investigación ha establecido las bases para establecer una nueva estrategia de inmunoterapia, aunque sería necesario realizar ensayos adicionales de estas dos moléculas en animales para comprobar su eficacia en el tratamiento de la alergia al melocotón.

6 de agosto de 2013

UNA NUEVA PROTEÍNA DESCUBIERTA CON UN VASTO POTENCIAL PARA EL TRATAMIENTO DEL CÁNCER Y OTRAS ENFERMEDADES

En la investigación del cáncer, el descubrimiento de una nueva proteína que juega un papel importante en el cáncer es como encontrar una llave y un mapa del tesoro: seguir las pistas y con el tiempo podría haber una gran recompensa. Al menos esa es la esperanza de un nuevo estudio que descubrió una nueva proteína llamada  proteína transportadora de ceramida-1 fosfato (CPTP), un hallazgo que podría conducir al desarrollo de nuevos fármacos para tratar una variedad de cánceres y otras enfermedades relacionadas con la inflamación y la trombosis o coagulación de la sangre.
El equipo descubrió que la CPTP regula los niveles de lípidos biológicamente activos, que son moléculas tales como ácidos grasos, que a menudo desempeñan un papel en la señalización celular. Este estudio determinó que la función principal de la CPTP es para el transporte de ceramida-1-fosfato (C1P), un lípido que ayuda a regular el crecimiento celular, la supervivencia, la migración y la inflamación. Específicamente, el C1P aumenta la producción de eicosanoides proinflamatorios, potentes moléculas de señalización que contribuyen a la inflamación crónica en enfermedades tales como el cáncer, el asma, la aterosclerosis y la trombosis.
Según Charles Chalfant, líder del equipo, es posible que se haya identificado el blanco más nuevo para el tratamiento del cáncer debido al importante papel que esta proteína juega en un número de funciones celulares, y podría tener grandes implicaciones para una variedad de enfermedades como el cáncer que son causadas por la inflamación.
Los investigadores fueron capaces de determinar la composición de los lípidos bioactivos regulados por la CPTP. Residiendo en el citoplasma, el equipo encontró que la CPTP regula el catabolismo del C1P, un proceso que rompe la molécula con el fin de liberar su energía. También demostraron que la CPTP transporta el C1P a la membrana celular donde ayuda a sintetizar eicosanoides a partir de ácidos grasos en la membrana.
Confirmación de una década de investigación del laboratorio de Chalfant, los científicos proporcionan más pruebas de que el C1P regula al grupo IVA fosfolipasa A2, una enzima que promueve la inflamación a través de la producción de un ácido graso conocido como ácido araquidónico. La liberación de ácido araquidónico a través de la activación de esta enzima via el C1P ,se demostró desencadena la producción de eicosanoides. Estos descubrimientos ayudan a explicar la relación reportada entre la ceramida quinasa, la enzima responsable de la producción del C1P, y el mal pronóstico en pacientes con cáncer de mama, lo que sugiere además que el alivio de la inflamación sistémica puede conducir a un mejor pronóstico y una mejor respuesta al tratamiento.
Chalfant espera poder utilizar este conocimiento de la estructura de la CPTP con el fin de encontrar moléculas pequeñas y otros medios que puedan bloquear esta proteina. Los usos inmediatos de tales agentes terapéuticos pueden ser el restablecimiento de la coagulación en pacientes con traumatismos mediante el mantenimiento de los niveles de eicosanoides específicos que median en la coagulación de la sangre. Sin embargo, con más investigación, él y su equipo esperan definir exactamente cómo se produce la CPTP de manera que se pueda regular su producción y potencialmente desarrollar nuevos tratamientos para una variedad de enfermedades.

9 de marzo de 2013

LOGRAN REVERTIR EN RATONES LA DESPIGMENTACIÓN QUE CAUSA EL VITÍLIGO EN LA PIEL


La desfiguración de la piel a causa del  vitíligo puede ser invertida utilizando una proteína genéticamente modificada diseñada por investigadores de la Loyola University Chicago’s Stritch School of Medicine.
De acuerdo con el dermatólogo Jeffrey Karaban, quien no está asociado con la investigación, los resultados serían impactantes si un tratamiento consistentemente eficaz utilizando la proteína puede ser producido.
Según Caroline Le Poole, miembro del equipo de investigadores, la investigación hasta ahora se ha limitado a los ratones, pero las pruebas preliminares en muestras de tejido de piel humana también han dado resultados prometedores. Sin embargo, los investigadores esperan obtener la financiación de los ensayos clínicos en humanos.
Le Poole y sus colegas recorrieron los 641 aminoácidos que forman la proteína HSP70i, conocida por jugar un papel vital en la respuesta autoinmune que causa el vitiligo. El trastorno afecta a entre el 0,5 y 0,8 por ciento de la población y se caracteriza por la destrucción de los melanocitos, encargados de la pigmentación de la piel, dejando parches blancos e irregulares con la misma textura que la piel normal.
Le  Poole explica que iniciaron buscando la región de la molécula que sería responsable de la activación del vitíligo y fue allí donde introdujeron una serie de mutaciones para averiguar cuáles tendrían un efecto sobre la respuesta inmune que sigue y cuáles interferían totalmente con la respuesta.
Le Poole inyectó la versión mutada de la proteína en un grupo de ratones de color oscuro que desarrollaron vitíligo, caracterizado por parches blancos distintivos de piel. La proteína mutante sustituyó la proteína normal HSP70i encontrada en los ratones y en cuestión de semanas, el color se restauró completamente.
Le Poole ha estado estudiando el vitíligo y las células productoras de melanina  en la piel, llamadas melanocitos durante más de 20 años y considera sus hallazgos más recientes, un hito en su carrera.
Según los Institutos Nacionales de Salud, el vitíligo parece ocurrir cuando las células inmunitarias destruyen los melanocitos, que producen pigmento, porque el sistema inmunitario del cuerpo las ve como una amenaza, es una predisposición genética pero algunos productos químicos y otros factores ambientales también pueden jugar en él.
Los dermatólogos se basan en una variedad de herramientas para el tratamiento del vitíligo, ninguno de los cuales son soluciones a largo plazo: cremas de esteroides, terapia de luz ultravioleta, vitamina D, e injertos de piel, que puede ser doloroso y costoso.
Le Poole dijo que hay una serie de pasos que se deben tomar antes de que la proteína mutante pueda ser aprobada para el tratamiento comercial, se  tendría que averiguar lo que hace a otras respuestas inmunes o si hay algunos efectos no deseados.

6 de enero de 2013

OBTIENEN COMPUESTO ANTICANCEROSO A PARTIR DE ALGAS


Biólogos de la Universidad de California (UC San Diego) han logrado obtener un potente compuesto anticanceroso a partir de un alga denominada Chlamydomonas reinhardtii. Los científicos señalan que este complejo es el mismo que utiliza un medicamento muy caro que se comercializa en la actualidad en tratamientos contra el cáncer. 
El hallazgo abre la puerta para producir proteínas de diseño en grandes cantidades a partir de algas de forma mucho más barata que las obtenidas de células de mamífero, por lo tanto el precio del fármaco fabricado se reduciría de manera drástica.
Según uno de los biólogos, Stephen Mayfield, su método puede ser usado para producir sofisticados fármacos para tratar cáncer y otras enfermedades de manera totalmente novedosa, ya que este tipo de fármacos no se pueden producir mediante bacterias porque son incapaces de plegar las proteínas en formas tridimensionales y tampoco se pueden obtener de células de mamíferos porque las toxinas las matarían.
El desarrollo ha utilizado un alga modificada genéticamente para producir una proteína tridimensional con dos dominios, uno de ellos contiene un anticuerpo que se asocia a una célula cancerosa y otro que tiene una toxina que mata a esa célula, usando un procedimiento mucho más simplificado que el que efectúan las compañías farmacéuticas en la actualidad. 
El avance es la culminación de siete años de trabajo en laboratorio para demostrar que la Chlamydomonas reinhardtii, un alga verde usada ampliamente en biología como modelo genético, puede producir un amplio rango de proteínas terapéuticas en mayor cantidad y de forma más económica que usando bacterias o células de mamífero. 
Mayfield y sus colegas lograron su primer éxito hace cinco años cuando demostraron que podían producir una proteína de suero amiloide de mamífero a partir de algas. Al año siguiente lograron obtener una proteína de anticuerpo humano y en 2010 demostraron que proteínas terapéuticas más complejas como los fármacos de factor de crecimiento endotelial vascular (VEGF), utilizadas para tratar pacientes que sufren enfisema pulmonar, pueden ser producidos también a base de algas. 
En mayo de este año el grupo de Mayfield, en colaboración con un equipo liderado por Joseph Vinetz de la UC San Diego's School of Medicine, obtuvo una proteína con potencial de ser usada como vacuna contra la malaria en el futuro a partir de algas.

24 de diciembre de 2012

DESCUBREN HONGOS CUYAS NANOPARTÍCULAS PODRÍAN CURAR EL CÁNCER


Las nanopartículas producidas por el hongo Arthrobotrys oligospora pueden estimular el sistema inmune y matar los tumores,según una investigación liderada por Mingjun Zhang, profesor asociado de Ingeniería Biomédica en la Universidad de Tennessee, Estados Unidos.
Los investigadores principales, Zhang y su colega Yongzhong Wang, estaban examinando el mecanismo de captura de A. oligospora en las lombrices cuando descubrieron que el hongo segrega nanocompuestos constituidos por nanopartículas altamente uniformes, que son partículas pequeñas que han demostrado ser importantes en terapias contra el cáncer.
Las nanopartículas de origen natural han atraído el interés creciente de la comunidad científica para su biocompatibilidad. Debido a su gran superficie y volumen, las nanopartículas han demostrado unas propiedades ópticas, térmicas y electrónicas. Además, su pequeño tamaño les permite cruzar fácilmente las membranas celulares, un requisito esencial para la terapia contra el cáncer.
Los investigadores estudiaron el potencial de las nanopartículas fúngicas como un estimulante para el sistema inmune y descubrieron en un estudio 'in vitro' que las nanopartículas activan la secreción de un estimulante del sistema inmune dentro de una línea de glóbulos blancos. Además, las estudiaron como agentes antitumorales utilizando dos líneas de células tumorales y descubrieron que las nanopartículas matan las células cancerosas.
Según Zhang, la naturaleza se enfrenta a muchas enfermedades, y ofrece mecanismos para curarse como resultado de la evolución, así que las nanoestructuras basadas en la naturaleza poseen una diversidad sin fin, que ofrece nuevas soluciones para aplicaciones terapéuticas. "Este estudio podría ser la entrada a una mina de oro de nuevos materiales para el tratamiento de cánceres", añade el director de la investigación, quien destaca la relevancia de mirar a la naturaleza para innovar en el tratamiento de la enfermedad.