"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta CÉLULAS MADRE. Mostrar todas las entradas
Mostrando entradas con la etiqueta CÉLULAS MADRE. Mostrar todas las entradas

13 de septiembre de 2013

PRODUCEN POR PRIMERA VEZ CÉLULAS MADRE EMBRIONARIAS EN RATONES VIVOS ADULTOS

Por primera vez, un equipo científico ha conseguido que células adultas de un organismo vivo retrocedan en su desarrollo evolutivo hasta recuperar características propias de células madre embrionarias. 
Liderado por Manuel Serrano, director del programa de Oncología Molecular del Centro Nacional de Investigaciones Oncológicas (CNIO), los resultados revelan además que estas células madre embrionarias obtenidas directamente en el interior del organismo tienen una capacidad de diferenciación más amplia que las conseguidas mediante cultivo in vitro.
Las células madre embrionarias son la principal apuesta para la futura medicina regenerativa. Son las únicas capaces de generar cualquier tipo celular de los cientos que conforman un organismo adulto, por lo que constituyen el primer paso para la curación de enfermedades como alzhéimer, párkinson o diabetes. No obstante, este tipo de células tiene una brevísima existencia, limitada a los primeros días del desarrollo embrionario, y no existen en ninguna parte del organismo adulto.
Uno de los mayores hitos en la reciente investigación biomédica fue el protagonizado por Shinya Yamanaka, quien al conseguir crear en el laboratorio células madre embrionarias abrió un nuevo horizonte en la medicina regenerativa. Sin embargo, el nuevo trabajo ha dado un paso más al conseguir lo mismo que el científico japonés, pero esta vez dentro del propio organismo, en ratones, sin necesidad de pasar por placas de cultivo in vitro.
El primer desafío de los investigadores del CNIO fue reproducir el experimento en un ser vivo. Usando técnicas de manipulación genética, crearon ratones en los que se puede activar a voluntad los cuatro genes de Yamanaka. Estos factores se expresan de forma inducible por doxiciclina (un antibiótico), de forma que se pueden controlar cuándo van a expresarse simplemente añadiendo doxiciclina al agua de bebida de los ratones.Así, cuando activaron estos genes, observaron que las células adultas fueron capaces de retroceder en su desarrollo evolutivo hasta células madre embrionarias en múltiples tejidos y órganos.
En comparación con las células obtenidas con la técnica desarrollada por Yamanaka, la células madre obtenidas ahora representan un estadio embrionario aún más temprano, con mayores capacidades de diferenciación. De hecho, los autores fueron incluso capaces de inducir la formación de estructuras pseudoembrionarias en las cavidades torácica y abdominal de los ratones.
Estos pseudoembriones presentaban las tres capas propias de los embriones, estructuras extraembionarias como el saco vitelino e incluso signos de formación de células sanguíneas. Estas células madre son mucho más versátiles que las células de Yamamaka, cuya potencialidad genera las distintas capas del embrión, pero nunca tejidos que sustentan el desarrollo de un nuevo embrión, como la placenta.
Los autores subrayan que las posibles aplicaciones terapéuticas del trabajo aún están lejos, pero sugieren que pueden significar un cambio en el rumbo de las investigaciones con células madre en la medicina regenerativa o en la ingeniería tisular. Por el momento, los científicos no han conseguido injertar con éxito células diferenciadas provenientes de células madre generadas in vitro.
María Abad, miembro del equipo, opina que, a partir de ahora, lo ideal sería inducir la reprogramación in vivo dentro de tejidos dañados y que sea allí donde esas células se diferencien. Con esto se evitaría la extracción de células, la reprogramación y diferenciación al tipo celular deseado in vitro, y el transplante.
La científica además sostiene que estas células madre sobreviven también fuera de los ratones, en cultivo, por lo que podrían, además, manipularlas en el laboratorio. Finalmente, el siguiente paso es estudiar si estas nuevas células madre son capaces de generar de una forma más eficiente distintos tejidos, como páncreas, hígado o riñón.

31 de agosto de 2013

CREAN MINICEREBROS A PARTIR DE CÉLULAS MADRE HUMANAS PARA EL ESTUDIO DE ENFERMEDADES NEUROLÓGICAS

El desarrollo del cerebro humano es uno de los grandes misterios de la biología, pero un grupo de investigadores austriacos y británicos presentan una técnica para generar tejido cerebral que ayudará a avanzar en su estudio.
El equipo, liderado desde el Instituto de Biotecnología Molecular (IMBA) de la Academia Austriaca de Ciencias, ha conseguido crear organoides cerebrales partiendo de un cultivo de células madre pluripotentes. 
Jürgen Knoblich, del IMBA afirma que han generado un neuroectodermo, una capa de células de la que se deriva el sistema nervioso. Los fragmentos de este tejido se mantienen en un cultivo tridimensional y se embeben en gotas de un gel que actúa de andamiaje para que pueda crecer. Para favorecer la absorción de los nutrientes, se transfirieron después las gotas de gel a un biorreactor giratorio, y en unas tres o cuatro semanas ya estaban formadas y definidas las regiones cerebrales.
En los organoides cerebrales resultantes se pueden diferenciar regiones como corteza cerebral, retina, meninges o el plexo coroideo (porción del encéfalo que forma el líquido cefalorraquídeo).
Después de dos meses de desarrollo, los minicerebros alcanzan su tamaño máximo, aunque pueden sobrevivir indefinidamente,en la actualidad hasta 10 meses, en el biorreactor giratorio. Según los investigadores, probablemente, y de momento, no crecen más debido a la falta de un sistema de circulación eficaz que lleve los nutrientes y el oxígeno al interior del organoide. 
En cualquier caso, estos tejidos cerebrales en 3D se asemejan a las primeras etapas de formación del cerebro humano, por lo que facilitan los estudios sobre la evolución de este órgano esencial. Además, el método permite estudiar algunas enfermedades neurológicas humanas de una forma que no lo hacen los modelos con ratas u otros animales de laboratorio, cuyo cerebro es menos complejo.
En concreto, los investigadores han logrado identificar y modelar con su técnica un trastorno que afecta el desarrollo normal del cerebro: la microcefalia, que conduce a tener un cerebro más pequeño en las personas que lo padecen. Los autores sugieren que las células defectuosas que aparecen en los pacientes no experimentan el mismo crecimiento en los ratones, lo que podría explicar por qué los modelos en animales han sido incapaces de recoger la gravedad de este trastorno como se observa en los seres humanos.

24 de julio de 2013

SIMPLIFICAN EL PROCESO PARA GENERAR CÉLULAS MADRE A PARTIR DE CÉLULAS ADULTAS HUMANAS

Científicos del Centro de Medicina Regenerativa de Barcelona (CMRB) y del Salk Institute de California (EE UU), liderados por Juan Carlos Izpisúa Belmonte, han descubierto un nuevo método que facilita el proceso de obtención de células madre a partir de células adultas humanas.
El equipo de Izpisúa demuestra que la receta para obtener células madre inducidas (células iPS) es mucho más versátil de lo que se creía. De hecho, los autores han reemplazado por primera vez un gen que se creía imposible de sustituir, lo que facilitará el proceso de obtención de células madre por métodos más seguros que potencialmente se podrán trasladar a la práctica clínica.
Las células iPS ofrecen dos ventajas muy importantes: se pueden crear a partir de células del mismo paciente, evitando así el rechazo immunológico, y no implican la destrucción de embriones sobrantes de tratamientos de fecundación in vitro. Hasta la fecha se creía que solo se podían producir estas células utilizando una fórmula muy estricta que no permitía ninguna variación, limitando así su potencial para la aplicación terapéutica.
En el año 2006, el equipo investigador japonés dirigido por Shinya Yamanaka descubrió un método para obtener células madre pluripotentes a partir de células diferenciadas adultas de ratón, que se denominaron células iPS. En 2007, el mismo grupo obtuvo con el mismo método células iPS a partir de células humanas. 
El método del grupo japonés consiste en introducir en las células cuatro factores de transcripción que se han conocido desde entonces como ‘factores Yamanaka’. Los científicos han utilizado con éxito esta receta para transformar, en el laboratorio, células procedentes de la sangre, la piel y de otros tejidos en células pluripotentes que pueden dar lugar a células de cualquier órgano del cuerpo.
Aunque las células iPS serían teóricamente muy útiles en medicina regenerativa, la metodología utilizada para generarlas conlleva muchos problemas asociados, por ejemplo, dos de los factores utilizados en la receta son oncogenes, por lo que aún está lejos su utilización en pacientes.
Ahora, los expertos han dado un enfoque totalmente nuevo a esta línea de investigación y han descubierto que se puede lograr la pluripotencia mediante un fino balance de genes necesarios para la diferenciación celular, es decir, genes que instruyen a las células para especializarse en líneas particulares, como pueden ser células de la piel o de la sangre.
Antes de estos experimentos, la mayoría de investigadores en este campo intentaba sustituir los factores clásicos de reprogramación por otros que se presentaran de manera natural en las células madre embrionarias.
El equipo de Izpisúa se aproximó al problema de una manera innovadora. Así, los investigadores se dieron cuenta de que los cuatro ‘factores Yamanaka’ no eran necesarios, ya que la pluripotencia se podía lograr alterando el balance de genes presentes en las células adultas y que intervienen en la especificación del linaje celular.
En este trabajo han identificado nuevos genes, no descritos anteriormente como inductores de la reprogramación ni típicos de células madre, que permiten reprogramar las células somáticas a un estado de pluripotencia. Este hallazgo podría conducir al diseño de protocolos de reprogramación más seguros y reducir el riesgo de transformación oncogénica.
Los autores han demostrado que más de siete genes adicionales son capaces de participar en el proceso de reprogramación de fibroblastos humanos a células iPS, y lo más importante: han demostrado por primera vez que todos los ‘factores Yamanaka’ pueden ser sustituidos.
El hecho de que un factor como OCT4, previamente considerado característico de células madre, pueda ser sustituido conlleva la posibilidad de que las células madre generadas de esta manera sean fundamentalmente distintas a las obtenidas por otras metodologías, lo que para los investigadores podría traducirse en un mejor comportamiento en términos de seguridad o funcionalidad.
Los hallazgos ofrecen la posibilidad de identificar en un futuro inmediato pequeñas moléculas (fármacos) capaces de reemplazar OCT4 en el proceso de la reprogramación celular. De esta manera evitar el uso de metodologías empleadas hasta la fecha, que dificultan el uso de las células reprogramadas en terapias de sustitución celular. Así pues, el uso de fármacos podría suponer la generación de células iPS mediante estrategias seguras aptas para su traslación a la clínica. 

21 de julio de 2013

NUEVO HALLAZGO PARA LA REGENERACIÓN DE EXTREMIDADES AMPUTADAS

Los mamíferos poseen la notable capacidad de regenerar una yema del dedo perdida, incluyendo la uña, nervios y hasta el hueso. En humanos, una yema del dedo amputada puede regenerarse en tan sólo dos meses, un fenómeno que ha permanecido poco comprendido hasta ahora, y que suscita la obvia pregunta de si se podría lograr activar este proceso en otras partes del cuerpo, para hacer rebrotar extremidades amputadas.
En un nuevo estudio, se ha descubierto la vía bioquímica que enlaza el crecimiento de las uñas con la regeneración de las yemas de los dedos. Los investigadores, del Centro Médico Langone de la Escuela de Medicina en la Universidad de Nueva York, Estados Unidos, han aclarado así algunos de los aspectos de este raro poder regenerativo en mamíferos, documentando por vez primera la cadena de eventos bioquímica que se pone en marcha tras la amputación de la yema de un dedo.
El equipo de la Dra. Mayumi Ito ha descubierto una población de células madre autorrenovables en la matriz de la uña, una parte del lecho de la uña rica en terminales nerviosas y vasos sanguíneos, que estimulan el crecimiento de la uña. Además, los científicos han comprobado que estas células madre dependen, para regenerar el hueso en la yema del dedo, de una familia de proteínas conocidas como la red de señalización Wnt. Las proteínas de esta familia son las mismas que desempeñan un papel crucial en la regeneración de tejido y de cabello.
Cuando el equipo de investigación bloqueó la vía de señalización de la red Wnt en ratones con yemas de los dedos amputadas, la uña y el hueso no rebrotaron como lo habrían hecho en condiciones normales.
La capacidad del cuerpo humano para hacer rebrotar una yema del dedo amputada plantea la posibilidad de activar por medios artificiales este proceso en otras partes del cuerpo, a fin de intentar regenerar extremidades amputadas.
Pero lo más fascinante para los científicos fue constatar que podían manipular la vía de la red Wnt para estimular la regeneración en hueso y otros tejidos más allá de las yemas de los dedos, logrando rebrotes que no se dan de forma natural ante amputaciones de esta magnitud.
El hallazgo podría ser quizá un primer paso hacia el desarrollo de terapias futuras para ayudar a regenerar extremidades amputadas en las personas que las perdieron.

11 de julio de 2013

REGENERAN LA RETINA EN RATONES MEDIANTE REPROGRAMACIÓN NEURONAL

Investigadores del Centro de Regulación Genómica (CRG) de Barcelona han conseguido regenerar la retina en ratones utilizando reprogramación neuronal. En este momento hay varias líneas de investigación que exploran la posibilidad de regeneración de los tejidos a través de la reprogramación celular. Uno de los mecanismos que se estudian es la reprogramación a través de la fusión celular.
La investigadora Pia Cosma y su equipo han utilizado el mecanismo de fusión celular para reprogramar las neuronas de la retina. Este mecanismo consiste en la introducción de células madre de la médula ósea en la retina dañada. Las nuevas células no diferenciadas se fusionan con las neuronas de la retina y éstas adquieren la capacidad de regenerar el tejido.
Pia Cosma, jefe del grupo de Reprogramación y Regeneración del Centro de Regulación Genómica, explica que por primera vez se ha conseguido regenerar la retina y reprogramar sus neuronas a través de la fusión de células in vivo. Se ha identificado una vía de señalización que, una vez activada, permite a las neuronas ser reprogramadas a través de su fusión con células de médula ósea . Este descubrimiento es importante no sólo por las posibles aplicaciones médicas para la regeneración de la retina, sino también para la posible regeneración de otros tejidos nerviosos.
El estudio, publicado por la revista Cell Reports, demuestra que la regeneración del tejido nervioso por medio de la fusión de células es posible en los mamíferos y describe esta nueva técnica como un mecanismo potencial para la regeneración de tejido nervioso más complejo.
El grupo que dirige Pia Cosma, se centrará ahora en determinar si este descubrimiento se produce de la misma manera en un número mayor de ratones, con la intención de descartar efectos colaterales futuros.
Esta investigación se encuentra en las primeras etapas, pero ya hay laboratorios interesados ​​en ser capaz de continuar con el trabajo y llevarlo a un nivel más aplicado.

22 de mayo de 2013

REPROGRAMAN CÉLULAS DE LA PIEL EN CÉLULAS MADRE EMBRIONARIAS PARA TERAPIA


Los científicos de la Oregon Health & Science University y el Centro de Investigación Nacional de Primates de Oregon (ONPRC) han reprogramado con éxito células de piel humana en células madre embrionarias capaces de transformarse en cualquier otro tipo de célula en el cuerpo. Se cree que las terapias de células madre mantienen la promesa de la sustitución de las células dañadas por una lesión o enfermedad. Enfermedades o condiciones que pueden ser tratadas a través de esta terapia incluyen la enfermedad de Parkinson, la esclerosis múltiple, enfermedades cardiacas y lesiones de la médula espinal.
La técnica utilizada por los investigadores es una variación de un método de uso común llamada transferencia nuclear de células somáticas, o SCNT. Se trata de trasplantar el núcleo de una célula, que contiene el ADN de un individuo, en un óvulo cuyo material genético ha sido eliminado. El óvulo fertilizado se desarrolla y finalmente produce células madre.
El doctor Mitalipov, miembro del equipo de investigación, explicó que un examen completo de las células madre obtenidas a través de esta técnica demostró la capacidad de éstas para convertirse, al igual que las células madre embrionarias normales, en diferentes tipos de células. Además, debido a que estas células reprogramadas pueden ser generadas con el material genético nuclear de un paciente, no hay que preocuparse de rechazo en un trasplante. 
Si bien hay mucho trabajo por hacer en el desarrollo de tratamientos con células madre seguras y efectivas, los investigadores creen que este es un importante paso hacia adelante en el desarrollo de células que podrían ser utilizadas en la medicina regenerativa.
Otro aspecto destacable de este estudio es que no se trata de la utilización de embriones fertilizados, un tema que ha sido la fuente de un debate ético significativo.
El éxito del equipo de Mitalipov en la reprogramación de células de piel humana llegó a través de una serie de estudios tanto en células humanas y de mono. Intentos fallidos previos realizados por varios laboratorios mostraron que los óvulos humanos parecen ser más frágiles que los huevos de otras especies. Por lo tanto, los métodos de reprogramación conocidos estuvieron estancados antes que las células madre sean producidas.
Para resolver este problema, los investigadores estudiaron diversos enfoques alternativos desarrollados primero en células de mono y después aplicados a las células humanas. A través de los hallazgos entre células de mono y células humanas, los investigadores fueron capaces de desarrollar un método exitoso.
La clave de este éxito fue encontrar una manera de estimular los óvulos para permanecer en un estado llamado metafase durante el proceso de transferencia nuclear. El equipo de investigación encontró que mantener químicamente la metafase durante todo el proceso de transferencia impidió que el proceso no se estanque y permitió además que las células se desarrollen y produzcan las células madre.
Una distinción importante es que mientras que el método podría ser considerado como una técnica para la clonación de células madre, comúnmente llamado clonación terapéutica, el mismo método probablemente no tenga éxito en la producción de clones humanos conocidos de otra manera como la clonación reproductiva. Varios años de estudios en monos de la transferencia nuclear de células somáticas no han logrado producir clones de mono. Se piensa que este es también el caso con los seres humanos.

11 de mayo de 2013

CREAN HUESOS A PARTIR DE CÉLULAS MADRE DERIVADAS DE LA PIEL



Un equipo de científicos aseguran haber generado sustitutos óseos de pacientes gracias a células de la piel para reparar grandes defectos en el hueso. El estudio supone un avance en los tratamientos reconstructivos personalizados para pacientes con defectos óseos resultantes de enfermedad o trauma que facilitará el desarrollo de injertos de hueso en tres dimensiones, combinados para adaptarse a las necesidades específicas y el perfil inmunológico de cada paciente.
A partir de células de la piel, los científicos han logrado reprogramar las células adultas para convertirlas en un estado similar al embrionario; así, las células resultantes son células madres pluripotentes inducidas (iPS) y son portadoras de la misma información genética que el paciente, además de poder convertirse en cualquier tipo de células humanas.
El siguiente paso fue programar a estas células para que se convirtieran en células progenitoras formadoras de hueso y, a continuación, los científicos sembraron las células en un andamiaje para la formación de hueso tridimensional. En concreto, los científicos colocan las construcciones en un dispositivo llamado biorreactor, que proporciona nutrientes, elimina los desechos y estimula la maduración, simulando un entorno de desarrollo natural.
Estudios previos ya habían demostrado el potencial de formación de huesos de otras fuentes celulares, aunque todavía es pronto para su traslado a la clínica. El problema radica en que aunque las células madre de médula ósea de un paciente pueden formar tejido óseo y cartilaginoso, no son capaces de generar la vasculatura subyacente y compartimentos nerviosos; además, los huesos derivados de células madre embrionarias pueden inducir un rechazo inmunológico. Para evitar estas limitaciones, los investigadores decidieron trabajar con células iPS.
Para el tratamiento de los defectos y lesiones óseas se emplean actualmente injertos óseos obtenidos a partir del propio paciente, de un banco de hueso de donante o gracias sustitutos sintéticos. Sin embargo, ninguno de estos permite la reconstrucción compleja y pueden provocar rechazo inmunológico para integrarse con los tejidos circundantes conectivos. Para los pacientes que sufren de traumatismos o lesiones vehiculares, estos tratamientos tradicionales proporcionan una mejora funcional y estética.
Antes de usar su técnica en animales, los investigadores verificaron en el laboratorio si funcionaba. Al comprobar que generaba hueso, los investigadores evaluaron la estabilidad cuando se trasplantaron células iPS derivadas en un modelo animalEl riesgo que hay con las células iPS no diferenciadas es que pueden formar teratomas, un tipo de tumorDespués de implantar las iPS derivadas de células de sustitutos óseos bajo la piel de ratones inmunodeficientes, a las 12 semanas, no había señales de tumores malignos, y sí que células de los vasos sanguíneos se integraban a lo largo de los injertos, lo que indica la estabilidad de los sustitutos óseos.
Los científicos advierten que si bien estos resultados representan un avance importante, se necesita una mayor investigación antes de que los injertos óseos derivados de células de la piel lleguen a los pacientes. Los próximos pasos incluyen la optimización del protocolo y el éxito del crecimiento de los vasos sanguíneos dentro del hueso. 

24 de enero de 2013

DESCUBREN UNA HABILIDAD OCULTA DE LAS BACTERIAS QUE PUEDE FACILITAR LAS TERAPIAS CON CÉLULAS MADRE

Investigadores de la Universidad de Edimburgo (Reino Unido) han descubierto que las bacterias son capaces de cambiar la composición de las células nerviosas de forma que toman las propiedades de las células madre. Dado que las células madre pueden desarrollarse en cualquiera de los diferentes tipos de células que hay en el cuerpo, incluyendo el hígado y las células del cerebro, imitar este proceso podría ayudar a la investigación en una amplia gama de condiciones degenerativas.
Los científicos hicieron el descubrimiento estudiando las bacterias que causan la lepra, una enfermedad neurodegenerativa infecciosa. El estudio, llevado a cabo en ratones y publicado en 'Cell', encontró que en las etapas tempranas de la infección, las bacterias fueron capaces de protegerse del sistema inmunológico del cuerpo escondiéndose en las células nerviosas, conocidas como células de Schwann o células gliales, y cuando la infección se estableció completamente, las bacterias fueron capaces de convertir las células nerviosas en células madre.
Al igual que las células madre normales, estas células eran pluripotentes, lo que significa que podrían convertirse en otros tipos de células, por ejemplo células musculares, lo que permitió a las bacterias propagarse por los tejidos del cuerpo, explican los investigadores. Además, las células madre generadas por bacterias también pueden secretar proteínas especializadas, llamadas quimiocinas, que atraen a las células inmunes, que a su vez recogen las bacterias y la propagación de la infección.
Los científicos creen que estos mecanismos, utilizados por las bacterias de la lepra, podría existir en otras enfermedades infecciosas. El conocimiento de esta táctica recientemente descubierta que utilizan las bacterias para propagar la infección podría ayudar a la investigación para mejorar los tratamientos y el diagnóstico precoz de las enfermedades infecciosas.
"Hemos encontrado una nueva arma en el arsenal de una bacteria que le permite difundirse de manera efectiva en el cuerpo mediante la conversión de las células infectadas a las células madre. Una mayor comprensión de cómo ocurre esto podría ayudar a la investigación para el diagnóstico más temprano de enfermedades infecciosas bacterianas, como la lepra", explica el director de la investigación, Anura Rambukkana, del Centro de Medicina Regenerativa de la Universidad de Edimburgo.
En la investigación se demostró que cuando una persona infectada de células de Schwann se reprograma para convertirlas como células madre, pierde la función de las células de Schwann para proteger las células nerviosas, que transmiten señales al cerebro, lo que lleva a dañar los nervios.
Según Rambukkana esto es muy interesante, ya que es la primera vez que se ve que las células del tejido funcional adultas pueden ser reprogramadas en células madre por una infección bacteriana natural, que además no conlleva el riesgo de crear células tumorales. Entonces potencialmente se podrían utilizar las bacterias para modificar la flexibilidad de las células, convirtiéndolas en células madre y luego utilizar los antibióticos estándar para matar las bacterias completamente de modo que las células puedan ser trasplantadas de forma segura al tejido que ha sido dañado por una enfermedad degenerativa.