"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta BIOENERGÍA. Mostrar todas las entradas
Mostrando entradas con la etiqueta BIOENERGÍA. Mostrar todas las entradas

3 de octubre de 2014

MEDIANTE INGENIERÍA GENÉTICA EN ESPECIES DE ARBOLES LEÑOSOS SE HA AUMENTADO SU PRODUCCIÓN DE BIOMASA IMPORTANTE EN EL SECTOR DE BIOENERGÍA

Gracias a la biotecnología, los investigadores de la Universidad Politécnica de Madrid (UPM) han aumentado la producción de especies leñosas. Este resultado es de gran interés para el mercado de la energía. 
Mediante la modificación de la expresión de los genes responsables de la creación de ramas durante el primer año de especies leñosas, los investigadores del Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA), de la  UPM y el Instituto Nacional para la Investigación y Experimentación Agrícola (INIA), han encontrado una manera de aumentar la producción de biomasa de una plantación forestal, sin alterar su crecimiento, ni la composición o anatomía de la madera. Estos resultados tienen un importante valor de mercado para el sector de la bioenergía, por lo que este estudio ha sido protegido por una patente. 
Las yemas laterales de la mayoría de las especies leñosas en áreas cálidas y frías no brotan en la misma temporada en la que han nacido. Estos brotes, llamados prolépticos, permanecen latentes y no crecen hasta la primavera siguiente. Sin embargo, algunos brotes laterales brotan durante la misma temporada como en los álamos yotras especies salicáceas y muchas especies tropicales. De esta manera, una ramificación siléptica puede aumentar la cantidad de ramas, el área foliar y el crecimiento de los árboles en general, sobre todo durante sus primeros años de vida. 
Sobre esa base, los investigadores de la UPM han utilizado un procedimiento biotecnológico para modificar los niveles de expresión génica del gen RAV1 que incrementa el desarrollo de ramificación siléptica de especies leñosas. De esta manera, los investigadores han encontrado una manera de aumentar la producción de biomasa de una plantación de álamo. Este proceso de modificación genética es potencialmente aplicable a cualquier especie leñosa y usa sus características de adaptación a un hábitat particular. 
El procedimiento biotecnológico utilizado por estos investigadores puede garantizar los rendimientos de producción sostenible de biomasa de especies leñosas sin afectar a la demanda de alimentos. Estos resultados pueden también mitigar los efectos del calentamiento global y mejorar la seguridad energética.

18 de noviembre de 2013

MEDIANTE EL COCULTIVO DE BACTERIAS DE DOS TIPOS DISTINTOS Y COMPLEMENTARIOS, CIENTÍFICOS LOGRAN GENERAN ELECTRICIDAD

Las células bacterianas usan una impresionante gama de estrategias para crecer, desarrollarse y mantenerse. A pesar de su pequeño tamaño, estas máquinas especializadas interactúan unas con otras en formas intrincadas.
En una nueva investigación llevada a cabo en el Instituto de Biodiseño de la Universidad Estatal de Arizona, Jonathan Badalamenti, César Torres y Rosa Krajmalnik-Brown exploran las relaciones de dos formas bacterianas importantes, lo que demuestra su capacidad para producir electricidad mediante la coordinación de sus actividades metabólicas. El grupo demuestra que la bacteria del azufre Chlorobium sensible a la luz verde puede actuar en conjunto con la Geobacter, bacteria generadora de electricidad. El resultado es una forma de generación de electricidad con respuesta a la luz.
Badalamenti , autor principal del proyecto, afirma que la Geobacter no es sensible por sí mismo a la luz, porque no es un organismo fotosintético. Por el contrario, la Chlorobium  si es fotosintética e incapaz de llevar a cabo la forma de respiración necesaria para la producción de electricidad. Pero al poner estos dos organismos juntos, se obtiene tanto una respuesta a la luz y la capacidad para generar corriente.
Los electrones que la Geobacter adquiere de su compañera fotosintética Chlorobium se pueden medir y se recogen en forma de electricidad, usando un dispositivo conocido como celda de combustible microbiana (MFC por sus siglas en ingles), una especie de batería biológica.
Las celdas de combustible microbianas pueden algún día llegar a generar electricidad limpia de diversas corrientes de residuos orgánicos, simplemente mediante la explotación de las capacidades de transferencia de electrones de diversos microorganismos.
En este estudio, los investigadores exploran la posibilidad de aumentar la producción de electricidad en MFC mediante el examen de la función de respuesta a la luz de la Chlorobium. La configuración experimental resultante, en el que las bacterias sensibles a la luz juega un papel en la generación de energía, se conoce como celda fotoelectroquímica microbiana (MPC por sus siglas en ingles).
Los resultados experimentales del estudio sugieren el siguiente escenario: las bacterias Chlorobium recogen la energía de la luz con el fin de fijar el dióxido de carbono e impulsar su metabolismo. Durante las fases oscuras; sin embargo, las bacterias se sostienen cambiando la fotosíntesis por una fermentación oscura, utilizando la energía que han almacenado. Acetato se produce como un subproducto metabólico de esta fermentación en fase oscura.
Durante los períodos de oscuridad, la bacteria Geobacter gana electrones desde el acetato producido a través del metabolismo de la Chlorobium, transfiriéndolos al ánodo del MPC, produciendo de este modo corriente eléctrica. Cuando las dos comunidades bacterianas se ven obligadas a interactuar, quedaba claro que la Chlorobium estaba ayudando a alimentar a la Geobacter, de una manera sensible a la luz.
Los autores señalan que una de las ventajas atractivas de su estudio es que en vez de tener que medir los metabolitos o crecimiento celular ya sea microscopicamente o por medio de intermediarios químicos, el construir un sistema de cocultivo en el que una de las lecturas es la electricidad permite controlar el metabolismo en el sistema en tiempo real.
Otras cuestiones se referían a si la presencia de la Chlorobium puede proporcionar beneficios para la Geobacter en cultivos que ocurren naturalmente, no confinados en un MFC. En experimentos libres de ánodos el grupo demostró que la supervivencia misma de la Geobacter a falta de otras fuentes de electrones dependía de la presencia del acetato derivado de la Chlorobium.
Además de establecer un mecanismo para la generación de energía eléctrica sensible a la luz en un MFC o MPC, las investigaciones apuntan al potencial de estudios similares para esclarecer una serie de interacciones microbianas productoras de energía.

20 de septiembre de 2013

LOGRAN GENERAR ELECTRICIDAD CON MICROORGANISMOS PRESENTES EN AGUAS RESIDUALES

Ingenieros de la Universidad de Stanford han desarrollado una nueva forma de generar electricidad a partir de aguas residuales utilizando microbios cableados que actúan como minicentrales naturales mientras digieren los desechos animales y vegetales.
En un artículo publicado en «Proceedings of the National Academy of Sciences», sus autores, Yi Cui, investigador de materiales, Criddle Craig, ingeniero ambiental, y Xing Xie, científico interdisciplinario, explican la invención de esta batería microbiana.
Su objetivo es que el invento pueda ser aplicado en lugares como plantas de tratamiento de aguas residuales, o donde se descomponen los contaminantes orgánicos, en zonas muertas de lagos y costas, donde la escorrentía de fertilizantes y otros residuos puede reducir los niveles de oxígeno y afectar a la vida marina.
Por el momento, el prototipo diseñado no supera el tamaño de una pila y presenta dos electrodos, uno positivo y otro negativo, además de una botella con agua residual. Con ese caldo, unidas al electrodo negativo, un tipo inusual de bacterias forman un festín con los desechos orgánicos y producen una electricidad que es captada con el electrodo positivo de la batería. «Lo llamamos la pesca de electrones», explicó Craig.
Durante años, los científicos han sabido de la existencia de los denominados microbios exoelectrogénicos: organismos que han evolucionado en ambientes sin ventilación y desarrollado la capacidad de reaccionar con los minerales de óxido en lugar de respirar oxígeno. Así, durante los últimos doce años, diversos grupos de investigación han intentado utilizar estos microbios como biogeneradores que crearan energía de forma eficiente.
En el electrodo negativo, las colonias de microbios se aferran a los filamentos de carbono, que sirven como conductores eléctricosCraig aclaró que han podido observar que estos microorganismos hacen nanocables para librarse del exceso de electrones. Esos electrones fluyen hacia el electrodo positivo, fabricado con óxido de plata, que los atrae.
Los investigadores estiman que la batería microbiana puede llegar a extraer el 30 por ciento de la energía encerrada en las aguas residuales, lo que sería parecido a la eficacia de las mejores células para convertir la energía solar en electricidad.
De cara al futuro, uno de los retos, según los investigadores, será encontrar un material barato pero eficaz para el nodo positivo. El uso del óxido de plata es demasiado caro para su uso a gran escala, ahora estan buscando un material más práctico, aunque les llevará algo de tiempo.

19 de junio de 2013

TRATAN DE GENERAR ELECTRICIDAD A PARTIR DE VEGETALES MEDIANTE UNA MANIPULACIÓN DE SU MECANISMO FOTOSINTÉTICO

Usar masas de vegetación como centrales eléctricas es un proyecto en el que ahora mismo está trabajando un equipo de la Universidad de Georgia en Athens, Estados Unidos.
El Sol es la fuente más abundante de energía en el planeta. Sin embargo, sólo una pequeña fracción de la radiación solar que llega a la Tierra es convertida por la tecnología actual en electricidad.
Para ayudar a cambiar esta situación, el equipo de Ramaraja Ramasamy, de la citada universidad, estudió los mecanismos de la naturaleza de nuestro mundo para aprovechar la energía solar, y ha obtenido de ellos la inspiración necesaria para comenzar a desarrollar una nueva tecnología que hace posible usar vegetales para generar electricidad.
Las plantas son las campeonas indiscutibles en el aprovechamiento de la energía solar. Tras millones de años de evolución, la mayoría de ellas opera a casi el 100 por ciento de eficacia cuántica, lo que significa que por cada fotón de la luz solar que captura la planta, obtiene un número igual de electrones. Convertir incluso una fracción de esto en electricidad mejoraría la eficiencia de los paneles solares, los cuales generalmente operan en niveles de eficiencia de entre el 12 y el 17 por ciento.
Durante la fotosíntesis, las plantas usan la luz solar para dividir moléculas de agua en hidrógeno y oxígeno, lo que produce electrones. Estos electrones recién liberados se utilizan para ayudar a crear azúcares que las plantas emplean como alimento para abastecer su crecimiento y reproducción.
El equipo de Ramasamy, ha desarrollado una forma de interrumpir la fotosíntesis de tal modo que los electrones puedan ser capturados antes de que la planta los utilice para formar esos azúcares.
La tecnología de Ramasamy se basa en manipular las estructuras de la célula vegetal que son responsables de capturar y almacenar energía de la luz solar. La manipulación apropiada de las proteínas contenidas en dichas estructuras permite interrumpir el flujo natural de los electrones.
Estas estructuras modificadas son inmovilizadas en un conjunto especialmente diseñado de nanotubos de carbono, estructuras cilíndricas de diámetro nanométrico. Los nanotubos actúan como un conductor eléctrico, capturando los electrones desde la planta y enviándolos a través de un cable.
En experimentos a pequeña escala, este diseño originó niveles de corriente eléctrica que, a igualdad de condiciones de alimentación de luz solar, son dos órdenes de magnitud mayores que los conseguidos previamente en sistemas similares.
Ramasamy advierte que todavía hay que realizar mucho más trabajo antes de que esta tecnología alcance la comercialización, pero él y sus colaboradores ya están trabajando en mejorar la estabilidad y la eficiencia de su dispositivo.

26 de mayo de 2013

DISEÑAN BACTERIAS PRODUCTORAS DE ELECTRICIDAD QUE SOLO NECESITAN DE HIDRÓGENO Y DIÓXIDO DE CARBONO

Investigadores de la Universidad de Massachusetts han diseñado una cepa de bacterias productoras de electricidad que pueden crecer utilizando gas de hidrógeno como su único donante de electrones y dióxido de carbono como su única fuente de carbono.
Amit Kumar, un investigador en el estudio, dijo que esto representa el primer resultado de la producción de corriente únicamente con hidrógeno.
Bajo la dirección de Derek Lovley el grupo de laboratorio ha estado estudiando las bacterias Geobacter desde que Lovley por primera vez aisló Geobacter metallireducens en los sedimentos de arena del río Potomac en 1987. Las especies Geobacter son de interés debido a su capacidad de biorremediación, el potencial de la bioenergía, nuevas capacidades de transferencia de electrones, la capacidad de transferir electrones fuera de la célula y transportar estos electrones a grandes distancias a través de filamentos conductores conocidos como nanocables microbianos.
Kumar y sus colegas estudiaron un pariente de G. metallireducens llamado Geobacter Sulfurreducens, que tiene la capacidad de producir electricidad mediante la reducción de compuestos orgánicos de carbono con un electrodo de grafito como el óxido de hierro o de oro para servir como el único aceptor de electrones. Ellos modificaron genéticamente una cepa de las bacterias que no necesitaban de carbono orgánico para crecer en una celda de combustible microbiana.
Kumar expresó que la cepa modificada produce fácilmente la corriente eléctrica en las celdas de combustible microbianas con gas de hidrógeno como el único donante de electrones y ninguna fuente de carbono orgánico. El investigador además señala que cuando el suministro de hidrógeno a la celda de combustible microbiana era detenido intermitentemente, la corriente eléctrica se reducía significativamente y las células unidas a los electrodos no generaban ninguna corriente significativa.

2 de mayo de 2013

CREAN BIOCOMBUSTIBLES A PARTIR DEL CO2 DEL AIRE USANDO MICROORGANISMOS MODIFICADOS GENÉTICAMENTE


El exceso de dióxido de carbono en nuestra atmósfera, creado por la quema indiscriminada de combustibles fósiles, es la mayor fuerza motriz del cambio climático global, e investigadores de todas partes del mundo están buscando afanosamente nuevas maneras de generar electricidad que liberen menos carbono al entorno.
Ahora, un grupo integrado por algunos de estos investigadores ha encontrado una forma de procesar el mismísimo dióxido de carbono atrapado en la atmósfera para transformarlo en productos industriales útiles, ayudando con esto a paliar la presencia excesiva de CO2 en la atmósfera. Su descubrimiento podría conducir en un futuro no muy lejano a la creación de biocombustibles mediante su elaboración directamente a partir del propio dióxido de carbono que está en el aire, y que es uno de los principales responsables de retener en la atmósfera la energía de los rayos del Sol, elevando de este modo las temperaturas globales en el fenómeno que se conoce como efecto invernadero.
Básicamente, lo que ha hecho el equipo de Michael Adams, del Departamento de Bioquímica y Biología Molecular en la Universidad de Georgia, Athens, Estados Unidos, es obtener por manipulación genética un microorganismo que hace con el dióxido de carbono exactamente lo mismo que hacen las plantas: lo absorbe y genera productos útiles.
Durante el proceso de fotosíntesis, los vegetales usan la luz solar para procesar agua y dióxido de carbono con la finalidad de elaborar azúcares que las plantas usan luego para obtener energía utilizable por ellas. El ciclo cubre así necesidades parecidas a las que cubre el metabolismo de animales como el Ser Humano, quemando las calorías de la comida para obtener energía utilizable. Los vegetales también liberan dióxido de carbono, solo que en menor medida que el absorbido por la fotosíntesis, con un balance positivo para el medio ambiente, siempre que las temperaturas estén en un nivel aceptable para las plantas.
Con estos azúcares es factible elaborar biocombustible, fermentándolos para hacer etanol, pero ha resultado muy difícil extraerlos con la eficacia necesaria, pues se encuentran atrapados dentro de las complejas paredes de las células.
Este nuevo descubrimiento significa que es factible prescindir de las plantas como paso intermedio en ese largo ciclo de producción. Ahora es viable tomar el dióxido de carbono directamente de la atmósfera, a través de microorganismos que se pueden manejar mejor que los vegetales, y convertirlo en productos útiles como por ejemplo biocombustibles y otras sustancias químicas de interés industrial, sin tener que pasar por el ineficaz proceso de cultivar las plantas y extraer luego los azúcares de su biomasa.
El nuevo proceso es posible gracias a un microorganismo único llamado Pyrococcus furiosus, que se nutre de carbohidratos en las aguas muy calientes cercanas a las fumarolas hidrotermales del fondo del mar. Estas fumarolas expelen agua marina calentada volcánicamente desde el subsuelo.
Modificando el material genético de este organismo, Adams y sus colegas crearon un nuevo tipo de P. furiosus capaz de alimentarse a temperaturas mucho más bajas a partir del dióxido de carbono.
El equipo de investigación usó hidrógeno para crear en el microorganismo una reacción química que incorpora el dióxido de carbono al ácido 3-hidroxipropiónico, una sustancia química de interés industrial, comúnmente utilizada para fabricar acrílicos y muchos otros materiales y productos.
Con otras manipulaciones genéticas de esta nueva cepa de P. furiosus, Adams y sus colaboradores lograron crear una variante que genera otros productos de utilidad industrial, incluyendo biocombustibles, a partir del dióxido de carbono.
Cuando el biocombustible creado gracias al P. furiosus es quemado, se libera a la atmósfera la misma cantidad de dióxido de carbono que se extrajo de ella en el ciclo de elaboración, por lo que el balance neto de carbono es cero, convirtiéndolo en una alternativa renovable y sostenible, mucho más limpia que la gasolina, el carbón y otros combustibles ampliamente utilizados en nuestros días.
El equipo de Adams trabajará ahora en refinar el proceso, con miras a probarlo a mayor escala.

23 de enero de 2013

MICROALGAS COMO FUENTE DE ENERGÍA PARA EDIFICIOS FUTURISTAS


Ingenieros franceses que trabajan en Nanterre tienen en mente utilizar microalgas para proveer energía a edificios futuristas. Para ello han empleado primero las aguas residuales domésticas en un proceso simple:
Estas aguas residuales son diluidas con el fin de que una serie de microorganismos (microalgas) puedan asimilar la contaminación, es decir, metabolizar los compuestos contaminantes, así permitir su reproducción. Acto seguido se separan las microalgas, del producto metabólico (aceite). El aceite puede transformarse en carburante para que su energía pueda transformarse en calor o en electricidad, por ejemplo fuente de energía para una lámpara.
Para materializar esa idea, han instalado sobre el tejado de un edificio fotobioreactores fabricados con unos tubos transparentes por los que circula el carburante y que permiten a las microalgas reproducirse a una velocidad excepcional.
El proceso de separación se realiza mediante el empleo de un novedoso sistema electromagnético que permite separar el agua de las algas reemplazando el proceso de centrifugado tradicional que requería una gran cantidad de energía.
El carburante recuperado tiene el mismo valor energético que el carbón. Y el agua reciclada, la misma calidad que el agua de lluvia.
Este sistema de tratamiento de aguas residuales puede producir hasta el 80% de la energía que necesita un edificio, y la mejor noticia es que no contamina, ya que no produce ni un gramo de dióxido de carbono.

2 de enero de 2013

POSIBLE USO PARA LA OBTENCIÓN DE BIOCONBUSTIBLES DE ALGAS CAPACES DE EXTRAER ENERGÍA DE OTRAS PLANTAS


Se ha descubierto que el alga verde Chlamydomonas reinhardtii, no sólo es capaz de nutrirse a partir de la fotosíntesis, sino que también obtiene energía de una fuente alternativa: otras plantas. Este hallazgo podría también tener un gran impacto sobre el futuro de la bioenergía.
Hasta ahora, se creía que sólo gusanos, bacterias y hongos eran capaces de digerir la celulosa vegetal y utilizarla como fuente de carbono para su crecimiento y supervivencia. Las plantas, por su parte, se valen de la fotosíntesis, por lo que requieren luz, así como dióxido de carbono y agua.
En una serie de experimentos, el equipo de Olaf Kruse, de la Universidad de Bielefeld, en Alemania, cultivó la especie microscópica de alga verde Chlamydomonas reinhardtii en un ambiente con dióxido de carbono limitado y observó que ante tal escasez, esta alga unicelular puede obtener energía a partir de la celulosa vegetal vecina. El alga secreta enzimas que "digieren" la celulosa, descomponiéndola en azúcares simples que pueden ser transportados al interior de las células y transformados en una fuente de energía. Como resultado final, el alga puede seguir creciendo.
Ésta es la primera vez que tal conducta es confirmada en un organismo vegetal, pues digerir de ese modo la celulosa contradice lo asumido durante mucho tiempo por la comunidad científica.
Actualmente, los científicos estudian si este mecanismo se encuentra en otros tipos de algas. Los resultados preliminares indican que sí.
En el futuro, esta propiedad hasta ahora desconocida de las algas también podría ser de interés para la producción de bioenergía. Degradar biológicamente la celulosa vegetal es uno de los pasos más importantes en los métodos de elaboración de biocombustibles bajo desarrollo o perfeccionamiento en este campo. Aunque a raíz de actividades como la agrícola hay disponibles grandes cantidades de residuos que contienen celulosa, las vías de transformación distan aún mucho de ser las óptimas.
En la actualidad, las enzimas necesarias para descomponer y procesar la celulosa (a las que se denomina celulasas) se extraen de hongos que, a su vez, requieren materia orgánica para crecer. Si en el futuro se puede obtener de algas las celulasas necesarias para una elaboración óptima de biocombustibles, no sería necesaria la materia orgánica destinada a nutrir a los hongos.

22 de diciembre de 2012

DISEÑAN UN PROTOTIPO DE PILA CON UNA BACTERIA QUE PRODUCE ELECTRICIDAD DURANTE LA DEPURACIÓN DE AGUAS RESIDUALES

Un grupo de investigadores españoles y extranjeros ha desarrollo un proyecto que permite obtener energía limpia directamente de la depuración de aguas residuales, gracias a la ayuda de una insólita bacteria capaz de producir electricidad durante su intervención en ese proceso de purificación hídrica.
Este trabajo de investigación, coordinado por el director del Instituto Universitario de Electroquímica de la Universidad de Alicante (UA), Juan Miguel Feliu, ha consistido en diseñar un prototipo de pila microbiana para uso industrial que genere de forma simultánea energía y depure aguas residuales.
El proyecto, financiado con tres millones de euros por la Unión Europea, puede aplicarse principalmente en las empresas dedicadas a la depuración de aguas, a las que les supondría un considerable ahorro en los gastos energéticos derivados del tratamiento usado para eliminar los componentes residuales hídricos.
El Instituto Universitario de Electroquímica de la UA ha liderado esta investigación multidisciplinar, denominada 'Bacwire' (Interconexión bacteriológica para la conversión de energía y biodescontaminación), que comenzó en octubre de 2009 y que acaba de finalizar.
Esta aventura científica ha partido de los conocimientos previos sobre un microorganismo, conocido como Geobacter Sulfurreducens, que vive en los entornos marinos y lechos de ríos donde no hay oxígeno.
Dicho microorganismo tiene la capacidad de crecer sobre un electrodo, lo que posibilita aprovechar la electricidad generada durante su metabolismo para crear un tipo muy particular de batería, llamada "pila de combustible" permitiéndose la producción de electricidad al tiempo que elimina residuos contaminantes.
En una primera fase de la investigación, los científicos estudiaron, a nivel muy básico y a escala de laboratorio, la fisiología de esta bacteria y su capacidad de comunicarse eléctricamente con distintos metales para optimizar las condiciones de generación de la electricidad. Posteriormente, emplearon ese conocimiento adquirido para diseñar diversos prototipos, de tamaños cada vez mayores, de pilas microbianas, que ya están en funcionamiento en las instalaciones del Instituto Universitario de Electroquímica de la UA para su posible aplicación a nivel industrial.
Los prototipos actuales llegan a producir una potencia eléctrica de entre 20 y 40 vatios por metro cuadrado, lo que equivale a unos 5 kilovatios por metro cúbico de agua tratada. Según los investigadores, un prototipo de investigación dentro de ese ámbito es considerado que puede ser aplicable a nivel industrial cuando supera la potencia de 1 kW/m3.
El agua residual es el combustible que emplea el dispositivo creado por estos investigadores para obtener la energía eléctrica. La novedad de este prototipo radica en que la energía eléctrica se logra de manera directa, sin etapas intermedias, como puede ser la formación de gas metano, lo que aumenta notablemente la eficiencia del proceso, ha destacado Climent.
Aunque el proyecto ha finalizado, los investigadores creen que se pueden optimizar aún más los resultados del prototipo diseñado y aumentar la potencia eléctrica mediante una serie de modificaciones en las condiciones en que esta bacteria se une al electrodo para mejorar su rendimiento energético.

19 de diciembre de 2012

UTILIZAN ALGAS DE AGUA DULCE PARA CREAR UNA BIOLÁMPARA QUE SE ENCIENDE POR SI SOLA


Es bien sabido que gran cantidad de especies, sobre todo marinas, generan luz, entre ellas, bacterias, hongos, gusanos, moluscos, crustáceos, insectos, equinodermos y peces.
Algunas algas también pueden hacerlo, como la Synechocystis PCC 6803, escogida por un grupo de estudiantes para crear Luxilla, una lámpara que funciona sin necesidad de electricidad y que emite luz sólo por la noche. La lámpara se recarga con la fotosíntesis natural de la planta, es decir, en el día recibe la luz solar y produce el sustrato necesario para brillar la noche siguiente.
El grupo liderado por Bernardo Pollak en Chile recolectó las algas desde un lago, y con el proyecto participaron en el mundial de Biología Sintética y hoy trabajan en desarrollar la producción para que el sistema sea autónomo, además de evaluar cuánta luz puede emitir el sistema para ver cómo optimizar y aumentar esa característica.
La bioluminiscencia depende de la producción de unas proteínas que generan la reacción química que produce luz (fotones) como subproducto. Genes fueron introducidos a las algas y acoplados a su propio ciclo circadiano, de manera que la bioluminiscencia se produzca sólo después del ocaso y la lámpara se prenda sola.
Como se trata de algas, sólo requieren luz para alimentarse, a diferencia de otros proyectos creados con anterioridad, donde se utilizaban bacterias que necesitaban metano para vivir. Otra característica que la diferencia es que no sólo está pensada como un prototipo o como pieza de diseño, sino que la imaginan incluso en pasillos y aceras. 
La propuesta pretende generar iluminación pasiva para sectores que no requieren de alta luminosidad, aunque siempre cabe la posibilidad de que sea ornamental, dado que en sí la bioluminiscencia es un fenómeno visualmente llamativo e intrigante.