"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta VACUNAS. Mostrar todas las entradas
Mostrando entradas con la etiqueta VACUNAS. Mostrar todas las entradas

9 de septiembre de 2014

UN PROMETEDORA NUEVA VACUNA SE MUESTRA COMO UN POTENTE INMUNIZADOR CONTRA LA TUBERCULOSIS Y LA LEPRA

En muchas partes del mundo, la lepra y la tuberculosis viven lado a lado. A nivel mundial hay aproximadamente 233.000 casos nuevos de lepra por año, con casi la totalidad de ellos ocurriendo donde la tuberculosis es endémica.
La vacuna centenaria BCG, disponible actualmente, ofrece sólo una protección parcial tanto contra la tuberculosis como contra la lepra, así que se necesita una vacuna más potente para combatir ambas enfermedades. La investigación dirigida por la UCLA puede que haya encontrado un arma más potente contra ambas enfermedades. 
Los investigadores encontraron que rBCG30, una variante recombinante de BCG que sobreexpresa una proteína muy abundante de 30kDa de la bacteria de la tuberculosis conocida como Antígeno 85B, es superior a la BCG en la protección contra la tuberculosis en modelos animales, y también ofrece una protección cruzada contra la lepra. Además, encontraron que reforzando rBCG30 con la proteína Antígeno 85B, una proteína expresada también por el bacilo de la lepra, proporciona una protección considerablemente más fuerte contra la lepra. 
El Dr. Marcus A. Horwitz, profesor de medicina y microbiología, inmunología y genética molecular, y el autor principal del estudio comenta que este es el primer estudio que demuestra que una vacuna mejorada contra la tuberculosis también ofrece protección cruzada contra Mycobacterium leprae, el agente causante de la lepra, lo que significa que esta vacuna es prometedora para una mejor protección contra dos importantes enfermedades al mismo tiempo. Agregó además que también es el primer estudio que demuestra que reforzando una vacuna BCG recombinante mejora aún más la protección cruzada contra la lepra. 
En un primer experimento, unos ratones fueron inmunizados o con la vacuna rBCG30 o con la vacuna BCG, o por el contrario se les dio una solución de sal. Diez semanas después, los ratones fueron inyectados con bacterias vivas de la lepra en las almohadillas de las patas y siete meses después de eso, se midió el número de bacterias de la lepra en en esa parte de las patas. Los investigadores encontraron que los ratones que recibieron BCG o rBCG30 tenían mucho menos bacterias de la lepra en sus almohadillas que los ratones que recibieron la solución salina. Además, los ratones inmunizados con rBCG30 tuvieron significativamente menos bacterias de la lepra que aquellos vacunados con BCG
En un segundo experimento, los ratones se inmunizaron primero con BCG o rBCG30, y luego inmunizados con una vacuna de refuerzo (r30) que consiste en la proteína Antígeno 85B de 30kDa de la bacteria de la tuberculosis en adyuvante, es decir, en una formulación química que aumenta la respuesta inmune. El grupo de ratones inmunizados con rBCG30 y reforzado con R30 no tenían bacterias de la lepra detectables en sus almohadillas, en contraste con los grupos de ratones inmunizados con todas las otras vacunas probadas, incluyendo BCG y rBCG30 a solas y BCG reforzado con r30.
En otros experimentos, se midieron las respuestas inmunes de los ratones después de la vacunación. Los ratones inmunizados con rBCG30 y reforzado con r30 habían mejorado notablemente la respuesta inmune a la versión del Antígeno 85B de la bacteria de la lepra (que es muy similar a la expresada por el bacilo de la tuberculosis) en comparación con los ratones inmunizados con las otras vacunas ycon las combinaciones de las mismas.
Un ensayo en humanos en Fase 1 para rBCG30 ha demostrado que es segura y significativamente más eficaz que la BCG, y es la única vacuna de reemplazo candidata para BCG probado hasta el momento para satisfacer ambos criterios clínicos clave. Sin embargo, Horwitz señaló que este estudio más reciente, con respecto a la lepra, se llevó a cabo en un modelo animal, por lo que se necesitan más estudios para evaluar la eficacia de la vacuna rBCG30 en la protección contra la lepra en humanos. El siguiente paso en la investigación será probar la eficacia de la vacuna rBCG30 contra la tuberculosis en humanos. Si es eficaz contra la tuberculosis, entonces el siguiente paso sería probar su eficacia contra la lepra.

5 de junio de 2014

AVANCES EN EL DESARROLLO DE UNA VACUNA CONTRA LA MALARIA MEDIANTE EL USO DE PARÁSITOS GENÉTICAMENTE MODIFICADOS

Investigadores de Seattle BioMed anunciaron que han desarrollado una nueva generación de parásitos genéticamente atenuados (GAP) que podrían constituir el camino hacia una vacuna altamente protectora contra la malaria.
La malaria es causada por parásitos Plasmodium que se transmiten a los humanos por la picadura de mosquitos. Aunque las medidas de control, tales como mosquiteros, se implementan cada vez más, no existe ninguna vacuna eficaz capaz de erradicar la enfermedad.
El trabajo de los investigadores describe el desarrollo de parásitos de la malaria genéticamente modificados que son debilitados por la remoción precisa de genes y diseñados para prevenir eficazmente que el parásito induzca una infección en los seres humanos. Estos parásitos atenuados genéticamente son incapaces de multiplicarse, pero están vivos y capaz de estimular eficazmente el sistema inmune para construir defensas que prevengan la infección patógena. Si bien las vacunas ha demostrado ser muy eficaz en la protección contra los virus y bacterias, estas siguen siendo un enfoque nuevo en la lucha contra los parásitos.
Stefan Kappe, Ph.D., autor y profesor correspondiente de Seattle BioMed afirma que si bien la vacunación con parásitos vivos atenuados es capaz de proporcionar una protección completa contra la infección de la malaria, es imperativo que se pueda inutilizar permanentemente el complejo parásito de la malaria de modo que no pueda causar la enfermedad, y en su lugar, preparar eficazmente el sistema inmunológico.
La cepa GAP de primera generación (Ver aqui) tenía dos genes extraídos del parásito, pero esta nueva técnica, desarrollada en colaboración con científicos del Instituto Walter y Eliza Hall, en Australia, elimina tres genes independientes asociados con la patogenicidad del parásito, derogando de manera efectiva su capacidad de establecer una infección en los seres humanos.
El siguiente paso es probar la seguridad y eficacia de este parásito atenuado en los ensayos clínicos de una manera muy eficiente. El Centro de Ensayos Clínicos de Seattle BioMed es uno de los cuatro centros en el mundo aprobado para probar con seguridad y eficacia nuevos tratamientos contra la malaria y vacunas en seres humanos mediante el modelo de exposición humana a la malaria.

24 de enero de 2014

PROTEÍNAS MODIFICADAS GENÉTICAMENTE COMO POSIBLES VACUNAS CONTRA LA ALERGIA AL MELOCOTÓN

Una investigación, llevada a cabo por el Centro de Biotecnología y Genómica de Plantas (UPM-INIA) y dirigido por Araceli Díaz Perales, ha estudiado la alergia al melocotón, la alergia alimentaria más común , y la proteína de Pru p 3. Como resultado de este trabajo de investigación, se han desarrollado tres variantes hipoalergénicas de esta proteína. Todos pueden ser buenos candidatos para el uso de la inmunoterapia específica para la alergia al melocotón y también pueden ser utilizados como una vacuna.
Hoy en día, la alergia afecta a más del 25 % de la población de los países desarrollados. Actualmente, el tratamiento de la alergia a los alimentos consiste en evitar la ingesta de estos alimentos. Sin embargo , la posibilidad de reactividad cruzada (reacción a los alimentos relacionados) hace que esta práctica sea ineficaz.
La inmunoterapia específica es el único tratamiento para prevenir los signos más graves de la progresión de la alergia. La inmunoterapia consiste en la ingesta de dosis crecientes de extractos de alergenos a pacientes afectados. Sin embargo, el uso de este extracto podría inducir reacciones anafilácticas o conducir a la sensibilización a nuevos alergenos que se encuentran en la mezcla. De acuerdo con esto, el uso de moléculas hipoalergénicas, con menor capacidad de unirse a anticuerpos pero con la capacidad de estimular el sistema inmune, sería una herramienta útil para la inmunoterapia.
La alergia alimentaria más común en España y en el área mediterráneas es la alergia al melocotón, que es causada principalmente por las Pru p 3 proteínas. El tratamiento actual de esta alergia consiste en evitar el consumo de melocotón, ni frescas ni procesadas. Como alternativa, esta investigación ha definido las regiones de esta proteína alergénica que está implicada en la unión a anticuerpos y la estimulación de las células del sistema inmune. Después de eso, los investigadores desarrollaron tres variantes hipoalergénicas de esta proteína que se puede utilizar como una vacuna.
Estas variantes son el resultado de la modificación de epítopes (regiones de unión a anticuerpos) de esta proteína y se utilizaron en una investigación con un paciente alérgico al melocotón con el fin de confirmar su capacidad de estimulación del sistema inmune. Cada variante tiene una modificación diferente que fue diseñada mediante el uso de herramientas genéticas. Aunque la variante 1 (Pru p 3.01) mostró actividad alergénica muy similar con la proteína natural, la variantes Pru p 3.02 y Pru p 3.03 presentaron menor capacidad para unirse a anticuerpos. Además, esta ultimas mantuvieron su capacidad de estimular las células del sistema inmunológico (linfocitos) de los pacientes alérgicos al melocotón durante los ensayos in vitro.
Los resultados muestran que estas dos moléculas (Pru p 3,02 y Pru p 3,03) podrían ser buenos candidatos para el uso de la inmunoterapia específica para la alergia al melocotón.
Este trabajo de investigación ha establecido las bases para establecer una nueva estrategia de inmunoterapia, aunque sería necesario realizar ensayos adicionales de estas dos moléculas en animales para comprobar su eficacia en el tratamiento de la alergia al melocotón.

10 de enero de 2014

LOGRAN PROMETEDORES AVANCES EN TERAPIA ANTICANCERÍGENA CON CÉLULAS T MODIFICADAS

Células inmunes modificadas (células CARmeso) que dirigen respuestas inmunes hacia tumores que portan una proteína llamada mesotelina, mostraron actividad antitumoral en dos pacientes con cáncer avanzado que no habían respondido a tratamientos previos.
Células T con receptores de antígeno quiméricos (células T CAR)  son una forma de terapia celular personalizada que utiliza las células inmunes, llamadas células T, de los mismos pacientes. Después de que las células T son cosechadas a partir de un paciente, son modificadas para soportar una molécula que les permite unirse a una proteína específica llevada por las células cancerosas del paciente y que se activan para matar a las células cancerosas cuando lo hacen. Las células T CAR han mostrado resultados iniciales prometedores para los pacientes con algunos tipos de leucemia y linfoma, sin embargo, no han tenido mucho éxito para cánceres sólidos, uno de los principales problemas es la toxicidad. Dado que las células normales expresan la proteína diana de las células T CAR, aunque a niveles más bajos que las células del cáncer, las células T modificadas las reconocen y atacan así como a las células tumorales (desvío de la toxicidad).
Carl H. June, profesor de patología y medicina de laboratorio en la Escuela de Medicina de Perelman en la Universidad de Pennsylvania, afirma que han diseñado células T que expresan un CAR solo durante tres días, después del cual el ARNm es metabolizado rápidamente por el sistema, por lo que las células T vuelven a lo que eran antes en el paciente. Estas células T reconocen una proteína llamada mesotelina presente en muchos tumores, incluyendo el mesotelioma y el cáncer de páncreas, por lo tanto, son llamados células T CARmeso. La estrategia de los científicos es ofrecer múltiples infusiones de células T CARmeso al paciente, y si se produce toxicidad, se podría abortar la misma deteniendo las infusiones, porque los CAR basados ​​en ARNm revierten rápidamente a células T normales. Los científicos han encontrado que las CAR temporales que diseñaron son seguros, sin toxicidad fuera del tumor.
June ​​y sus colegas reclutaron a dos pacientes, de edades entre 75 y 81 años, para una primera fase de ensayos clínicos. Uno de los pacientes tenía mesotelioma avanzado, y el otro paciente tenía cáncer de páncreas metastásico que progresó después de fallar la terapia de primera línea. El objetivo de este ensayo fue evaluar la viabilidad y seguridad en la fabricación de las células T CARmeso basados ​​en ARNm. Los investigadores aislaron las células T de los pacientes, los reprodujeron en grandes cantidades en el laboratorio, y los diseñaron para reconocer la mesotelina en células tumorales, utilizando un material biológico llamado ARNm. Después de asegurar la viabilidad y la especificidad de las células modificadas, los investigadores introdujeron las células T de nuevo en sus cuerpos.
Después de recibir tres infusiones de células CARmeso, el paciente con mesotelioma mostró estabilización de la enfermedad. El paciente con cáncer de páncreas recibió ocho infusiones de células T CARmeso, y el fluido recogido de su abdomen mostró una disminución del 40% en el número de células tumorales que expresan mesotelina.
Ellos tambien encontraron que estas células T CARmeso no sólo tienen una actividad antitumoral, sino también actúan como una vacuna, y desencadenan una respuesta contra el propio tumor del paciente.

2 de octubre de 2013

PRUEBAN VACUNAS ENCAPSULADAS EN NANOPARTÍCULAS PARA SU ADMINISTRACIÓN DIRECTA EN SUPERFICIES MUCOSAS


Muchos virus y bacterias infectan a los humanos a través de superficies mucosas, como aquellos en los pulmones, el tracto gastrointestinal y el tracto reproductivo. Para ayudar a combatir estos patógenos, los científicos están trabajando en vacunas que pueden establecer una línea de defensa en las superficies mucosas.
Actualmente las vacunas pueden ser administradas a los pulmones a través de un aerosol, pero los pulmones a menudo se deshacen de la vacuna antes de que pueda provocar una respuesta inmune. Para superar esto, los ingenieros del MIT han desarrollado un nuevo tipo de nanopartícula que protege a la vacuna un tiempo suficientemente largo para generar una respuesta inmune fuerte, no sólo en los pulmones, sino también en las superficies mucosas lejanas del sitio de vacunación, tales como el tracto gastrointestinal y reproductivo.
Estas vacunas pueden ayudar a proteger contra la influenza y otros virus respiratorios, o prevenir las enfermedades de transmisión sexual como el VIH, el virus del herpes simple y el virus del papiloma humano, dice Darrell Irvine, profesor del MIT y líder del equipo investigación. Él también está estudiando el uso de las partículas para ofrecer vacunas contra el cáncer y otras enfermedades infecciosas.
Sólo un puñado de vacunas para mucosas han sido aprobadas para uso humano, el ejemplo más conocido es la vacuna contra la polio "Sabin", que se administra por vía oral y se absorbe en el tracto digestivo.
Para crear mejores formas de administración de tales vacunas, Irvine y sus colegas se basaron en una nanopartícula que ellos desarrollaron dos años atrás  Los fragmentos de proteína que componen la vacuna están encerradas en una esfera de varias capas de lípidos que químicamente están unidas la una a la otra, haciendo a las partículas más duraderas en el interior del cuerpo.
Esto permite a las partículas resistir la desintegración una vez que alcanzan los pulmones. Con este embalaje más resistente, la vacuna de proteína permanece en los pulmones el tiempo suficiente para que las células inmunitarias recubran la superficie de los pulmones las agarren y entreguen a las células T. La activación de las células T es un paso crítico para que el sistema inmune forme una memoria de las partículas de la vacuna.
En estudios con ratones, los investigadores encontraron que los antígenos del VIH o cáncer encapsulados en nanopartículas fueron absorbidos por las células inmunes con mucho más éxito que aquellas sin ser encapsuladas en nanopartículas.
El VIH no infecta a los ratones, por lo que para poner a prueba la respuesta inmune generada por las vacunas, los investigadores infectaron los ratones con una versión del vaccinia virus (VV) que fue diseñado para producir la proteína del VIH.
Los ratones vacunados con nanopartículas fueron capaces de contener rápidamente el virus y evitar que se escapen a los pulmones. VV se propaga a los ovarios antes de la infección, pero los investigadores encontraron que el VV en los ovarios de los ratones vacunados con nanopartículas fue indetectable, mientras que las concentraciones virales importantes se encontraron en ratones que recibieron otras formas de la vacuna.
Los ratones que recibieron la vacuna de nanopartículas perdieron una pequeña cantidad de peso después de la infección, pero luego se recuperaron completamente, mientras que era 100 por ciento letal para los ratones que recibieron la vacuna no encapsulada.
Los investigadores también encontraron una fuerte presencia de células T de memoria en las superficies mucosas distantes, incluso en los tractos digestivo y reproductivo. Irvine advierte además que a pesar de que la inmunidad en las mucosas distantes después de la vacunación en una superficie mucosa también se ​​ha visto en los seres humanos, todavía se está indagando si los patrones observados en ratones se reproducen completamente en humanos.
Las partículas también mantienen la promesa para la administración de vacunas contra el cáncer. Para probar esto, los investigadores implantaron en los ratones tumores de melanoma que fueron diseñados para expresar la ovoalbúmina. Tres días más tarde, se vacunaron los ratones con ovoalbúmina. Ellos encontraron que los ratones que recibieron la vacuna en nanopartículas rechazaron por completo los tumores, mientras que los ratones que recibieron la vacuna no recubierta, no lo hicieron.
Otros estudios deben realizarse con tumores más difíciles, dice Irvine. En el futuro, las pruebas con vacunas dirigidas a las proteínas expresadas por las células cancerosas serían necesarias.

14 de septiembre de 2013

POSIBLE VACUNA CONTRA LA MALARIA ELABORADA A PARTIR DE PARÁSITOS ATENUADOS MEDIANTE INGENIERÍA GENÉTICA

Un estudio podría ofrecer esperanza de una nueva vacuna de patógenos vivos-atenuados contra la malaria. Este estudio sugiere que los parásitos de la malaria modificados genéticamente (GAP) que son atenuados a través de precisas supresiones de genes podrían ser utilizados como una vacuna que protege contra la infección de la malaria. Esto significa que la versión inofensiva (atenuada) del parásito podría interactuar con el cuerpo de la misma manera como la versión infecciosa , pero sin posibilidad de causar enfermedad. La vacunación con GAPs  podría inducir respuestas inmunitarias robustas que protegen contra una futura infección con malaria.
Según la Organización Mundial de la Salud , hubo 219 millones de casos documentados de la malaria en el 2010, causando la muerte de hasta 1,2 millones de personas en todo el mundo. Tratamientos antipalúdicos están disponibles para reducir el riesgo de infección, pero hasta el momento no existe una vacuna eficaz contra la enfermedad.
El mes pasado, un equipo de científicos anunció los resultados de un ensayo con un nuevo tipo de vacuna contra la malaria, una preparación de parásitos debilitado por radiación. El ensayo mostró resultados prometedores , pero el método de la vacunación no era óptimo, requiriendo administración intravenosa y múltiples dosis altas. Este nuevo estudio describe un método de atenuación a través de la ingeniería genética en lugar de la radiación, que ofrece esperanza para una vacuna más consistente que da una mejor protección.
Stefan Kappe, Ph.D., autor principal del artículo y profesor de Seattle BioMed afirma que la malaria es una de las principales causas de muerte en el mundo, y pone en peligro el 40 por ciento de la población mundial, pero aún no existe una vacuna efectiva. En este trabajo se muestra que los parásitos genéticamente modificados son una opción viable y prometedora para el desarrollo de una vacuna contra la malaria, y actualmente están diseñando la próxima generación de cepas atenuadas del parásito con el objetivo de entrar en los estudios clínicos en breve.
Por primera vez, los investigadores crearon una versión debilitada del parásito de la malaria humana mediante la alteración de su ADN. Ellos probaron la seguridad del nuevo parásito modificado mediante inyección de seis voluntarios humanos a través de picaduras de mosquitos. Cinco de los seis voluntarios no mostraron infección con el parásito, sugiriendo que la nueva técnica genética tiene potencial como la base para una vacuna contra la malaria.
Stefan Kappe tambien cree que este enfoque ofrece un nuevo camino para hacer una vacuna de protección contra la malaria que puede que supere las limitaciones de los intentos de desarrollo previos. Los parásitos genéticamente modificados potencialmente proporcionan un acercamiento potente y escalable a la vacunación contra la malaria.

6 de enero de 2013

OBTIENEN COMPUESTO ANTICANCEROSO A PARTIR DE ALGAS


Biólogos de la Universidad de California (UC San Diego) han logrado obtener un potente compuesto anticanceroso a partir de un alga denominada Chlamydomonas reinhardtii. Los científicos señalan que este complejo es el mismo que utiliza un medicamento muy caro que se comercializa en la actualidad en tratamientos contra el cáncer. 
El hallazgo abre la puerta para producir proteínas de diseño en grandes cantidades a partir de algas de forma mucho más barata que las obtenidas de células de mamífero, por lo tanto el precio del fármaco fabricado se reduciría de manera drástica.
Según uno de los biólogos, Stephen Mayfield, su método puede ser usado para producir sofisticados fármacos para tratar cáncer y otras enfermedades de manera totalmente novedosa, ya que este tipo de fármacos no se pueden producir mediante bacterias porque son incapaces de plegar las proteínas en formas tridimensionales y tampoco se pueden obtener de células de mamíferos porque las toxinas las matarían.
El desarrollo ha utilizado un alga modificada genéticamente para producir una proteína tridimensional con dos dominios, uno de ellos contiene un anticuerpo que se asocia a una célula cancerosa y otro que tiene una toxina que mata a esa célula, usando un procedimiento mucho más simplificado que el que efectúan las compañías farmacéuticas en la actualidad. 
El avance es la culminación de siete años de trabajo en laboratorio para demostrar que la Chlamydomonas reinhardtii, un alga verde usada ampliamente en biología como modelo genético, puede producir un amplio rango de proteínas terapéuticas en mayor cantidad y de forma más económica que usando bacterias o células de mamífero. 
Mayfield y sus colegas lograron su primer éxito hace cinco años cuando demostraron que podían producir una proteína de suero amiloide de mamífero a partir de algas. Al año siguiente lograron obtener una proteína de anticuerpo humano y en 2010 demostraron que proteínas terapéuticas más complejas como los fármacos de factor de crecimiento endotelial vascular (VEGF), utilizadas para tratar pacientes que sufren enfisema pulmonar, pueden ser producidos también a base de algas. 
En mayo de este año el grupo de Mayfield, en colaboración con un equipo liderado por Joseph Vinetz de la UC San Diego's School of Medicine, obtuvo una proteína con potencial de ser usada como vacuna contra la malaria en el futuro a partir de algas.