"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta METABOLITOS. Mostrar todas las entradas
Mostrando entradas con la etiqueta METABOLITOS. Mostrar todas las entradas

29 de diciembre de 2014

LOGRAN PRODUCIR TRECE NUEVOS TERPENOS EN STREPTOMYCES MEDIANTE EL ANÁLISIS DE BASES DE DATOS DE GENOMAS DE UN GRUPO DE BACTERIA

Los terpenos son compuestos aromáticos responsables de los diferentes aromas de los aceites esenciales de las plantas y de las resinas de los árboles. Desde el descubrimiento de los mismos hace más de 150 años, los científicos han aislado unos 50.000 diferentes compuestos terpénicos derivados de plantas y hongos. Las bacterias y otros microorganismos son conocidos también por hacer terpenos, pero han recibido mucho menos atención.
Una nueva investigación de la Universidad de Brown, Estados Unidos, muestra que la capacidad genética de las bacterias para hacer terpenos está muy extendida. Usando una técnica especializada para tamizar a través de las bases de datos genómicas de una variedad de bacteria, los investigadores encontraron 262 secuencias de genes que probablemente codifican para terpeno sintasas (enzimas que catalizan la producción de terpenos). Luego, los investigadores utilizaron varias de aquellas enzimas para aislar 13 terpenos de origen bacteriano no identificados previamente. Los hallazgos sugieren que las bacterias representan una fuente fértil para el descubrimiento de nuevos productos naturales.
David Cane, profesor de química en la Universidad de Brown, comenzó a trabajar hace unos 15 años para entender cómo las bacterias hacen terpenos. En ese momento, las primeras secuencias genómicas de ciertas clases de bacterias estaban empezando a salir. Cane y sus colegas tuvieron la idea de encontrar las enzimas responsables de producir terpenos mirando las secuencias de los genes que estaban siendo descubiertas.
Para ello, Cane buscó a través de los datos genómicos recopilados para un grupo de bacterias llamadas Streptomyces, en busca de secuencias similares a las conocidas que expresan la terpeno sintasas en plantas y hongos. Finalmente, se encontró que, efectivamente, los Streptomyces tienen genes que codifican terpeno sintasas y que esas enzimas podrían ser utilizadas para hacer terpenos.
Las secuencias bacterianas verificadas que encontró Cane permitieron a otros investigadores refinar las búsquedas posteriores de genes adicionales de terpeno sintasas utilizando las secuencias bacterianas como consulta de búsqueda en vez de las secuencias de plantas o secuencias de hongos, lo que debería dar un mayor grado de similitud.
El siguiente paso fue verificar que estas secuencias, efectivamente codifican para enzimas capaces de hacer terpenos. Probar todos los 262 genes no era práctico, por lo que el equipo eligió algunos que podrían darles la mejor oportunidad de encontrar compuestos terpénicos que anteriormente no habían sido identificados. Buscaron secuencias que no parecen encajar claramente en categorías previamente conocidas de terpenos.
Después de haber seleccionado unos cuantos, el equipo hizo uso de una bacteria Streptomyces genéticamente modificada como una biorefinería para generar terpenos. En dicha bacteria se eliminaron los genes que son responsables de producir la mayoría de sus productos nativos, pero dejaron detrás toda la capacidad para proporcionar los materiales de partida y manejar la acumulación de productos.
Al tomar algunas de las secuencias de genes que encontraron y empalmándolos en su organismo de ensayo, los investigadores pudieron dejar que las Streptomyces generen el producto usando las instrucciones del nuevo gen introducido. Usando este método, fueron capaces de producir 13 terpenos previamente desconocidos, cuyas estructuras se verificaron por espectrometría de masas y espectroscopia de resonancia magnética nuclear.
Cane comenta que es un gran paso hacia adelante en el área, ya que proporciona un paradigma de cómo se puede descubrir muchas sustancias nuevas; también es un buen ejemplo de cómo se puede utilizar el análisis de secuencias para identificar genes de interés y luego aplicar técnicas genéticas, moleculares y microbiológicas para producir sustancias químicas de interés. El trabajo también sugiere que puede haber muchos productos terpénicos nuevos escondidos y aún por descubrir en los genomas de bacterias.

5 de diciembre de 2014

LOGRAN AUMENTAR LA PRODUCCIÓN DE METILCETONAS EN E.COLI UNAS CIENTO SESENTA VECES MEDIANTE INGENIERÍA METABÓLICA

Hace dos años, los investigadores del U.S. Department of Energy's Joint BioEnergy Institute (JBEI) modificaron una bacteria de Escherichia coli para convertir la glucosa en cantidades importantes de metilcetonas, una clase de compuestos químicos que se utilizan principalmente para fragancias y sabores, pero altamente prometedores como agentes de mezcla limpios, verdes y renovables para el diesel. Ahora, después de nuevas modificaciones genéticas, han logrado aumentar dramáticamente la producción de metilcetona unas 160 veces en la E. coli.
Harry Beller, microbiólogo  de la JBEI, y quien dirigió el estudio, comenta que hacer una mejora tan grande en la producción de metilcetonas con un número relativamente pequeño de modificaciones genéticas es alentador y creen que podrán mejorar aún más la producción utilizando los conocimientos adquiridos a partir de estudios in vitro de la nueva vía metabólica.
Las metilcetonas son compuestos naturales que se descubrieron hace más de un siglo en la planta de hoja perenne aromática conocida como ruda. Desde entonces han sido encontrados de forma común en los tomates y otras plantas, así como en insectos y microorganismos. Hoy en día se utilizan para proporcionar aromas en aceites esenciales y sabores en el queso y otros productos lácteos. Aunque las E. coli nativas producen cantidades prácticamente indetectables de metilcetonas, Harry Beller, Ee-Been Goh (coautor) y sus colegas han sido capaces de superar esta deficiencia utilizando las herramientas de la biología sintética.
Para la producción de metilcetonas los investigadores hicieron dos modificaciones importantes en la E. coli, primero se modificaron pasos específicos en la beta-oxidación, la vía metabólica que la E. coli utiliza para descomponer los ácidos grasos, y luego aumentaron la expresión de un enzima nativa de la E. coli llamada FadM. Estas dos modificaciones se combinaron para mejorar en gran medida la producción de las metilcetonas.
En un último esfuerzo, los investigadores hicieron otras modificaciones que incluyeron equilibrar la sobreexpresión de otras dos enzimas de la E. coli, llamadas fadR y fadD, para incrementar el flujo de ácidos grasos en la vía; consolidando dos vías plasmídicas en una; optimizando el uso de codones para los genes no nativos de la ruta de E. coli; y silenciando las rutas claves de producción de acetato. Los resultados llevaron a una produccion de 3,4 gr/litro de metilacetona después de aproximadamente 45 horas de fermentación discontinua alimentado con glucosa. Esto es cerca del 40% del rendimiento teórico máximo para metilcetonas.
Aunque la producción mejoró aún no está a un nivel comercial en el mercado de los biocombustibles, pero está cerca al nivel comercial para su uso en sabores y aromas, donde ciertas metilcetonas son mucho más valoradas de lo que serían en el mercado de los biocombustibles.
Los estudios in vitro realizados por Beller y Goh dieron ideas sobre la ruta metabólica, algunas de las cuales apuntan a ulteriores alzas de producción. Un hallazgo clave fue la confirmación de que una enzima descarboxilasa no se requiere en la ruta metabólica de las metilcetonas pues varias diferentes vías se han desarrollado en los últimos dos años para la producción de metilcetonas en E. coli, un par de los cuales usan enzimas descarboxilasa para catalizar el último paso de la vía. 
Los estudios in vitro también se encargaron de las preocupaciones acerca de la enzima FadM siendo algo "promiscua" en sus actividades hidrolizantes. Beller y Goh encontraron que FadM puede actuar sobre productos intermedios en la vía metabólica de las meticetonas y reducir efectivamente el flujo de carbono a los productos finales de metilcetona. Sin embargo, ellos dicen que con un poco de conocimientos sobre ingeniería metabólica, esto no necesita ser un problema y conocer el fenómeno podría incluso ser utilizado para mejorar la producción.
Beller concluye que con toda probabilidad hay un punto ideal en el nivel de expresión de la enzima FadM que permitirá la producción máxima de metilcetonas sin desviar los intermediarios metabólicos.