"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta TERAPIA GÉNICA. Mostrar todas las entradas
Mostrando entradas con la etiqueta TERAPIA GÉNICA. Mostrar todas las entradas

31 de diciembre de 2013

DESARROLLAN UN MÉTODO MAS EFICAZ PARA EL PROCESO DE TRANSFECCIÓN EN CÉLULAS

Investigadores del Instituto Politécnico de la Universidad de Nueva York (NYU-Poly) y el Colegio de Odontología de la Universidad de Nueva York (NYUCD) han desarrollado un método que es cinco veces más eficiente en la introducción de ADN en las células que los métodos comerciales de hoy. Este nuevo complejo es un híbrido péptido-polímero, montado a partir de dos vectores separados y menos eficaces que se utilizan para introducir ADN en las células.
Los hallazgos fueron el resultado de un proyecto de investigación colaborativo realizado por el Dr. Seiichi Yamano de la NYUCD y el Dr. Jin Montclare de la NYU - Poly. El resultado del estudio podría ayudar a los investigadores a comprender mejor la función de los genes y mejorar la terapia génica en última instancia.
Los vectores son esencialmente los vehículos que llevan el material genético dentro la célula. Los vectores no virales tales como los diseñados en este estudio se utilizan para la transfección (introducción de material genético extraño en una célula). Pero la transfección no es tan fácil, las células están preparadas para mantener moléculas extrañas fuera del núcleo. Incluso si el plásmido transportado logra penetrar la membrana celular, el citoplasma dentro de la célula tiene medidas de seguridad para detener cualquier molécula que quiera entrar en el núcleo.
Tradicionalmente, los científicos han diseñado virus para llevar a cabo la transfección, pero los virus son problemáticos porque las células que los reconocen como objetos extraños y desencadenan la respuesta inmune. La transfección por virus es extremadamente costosa y presenta numerosas dificultades para el procesamiento en masa. Por otro lado, los vectores no virales no activan el sistema inmune y se fabrican y modifican fácilmente para entregas seguras y más eficaces. Su inconveniente es que generalmente son efectivos sólo por cortos períodos en la transfección, así como otras formas de expresión génica.
Para este proyecto, Yamano y Montclare emparejaron una versión modificada del CPP VIH-1 (mTat) con PEI (un vector no viral particularmente eficaz para la entrega de oligonucleótidos). Al combinar mTat y PEI, se construyó un nuevo vector no viral, más eficaz que el mTat o el PEI individualmente. Ellos probaron su vector reactivo tanto in vitro (en placa Petri), así como por aproximadamente siete meses en un organismo vivo (in vivo).

27 de octubre de 2013

CREAN NANOPOROS SELECTIVOS PARA SU FUTURO USO EN TERAPIA GÉNICA Y EN LA ADMINISTRACIÓN DE FÁRMACOS

Una célula viva está construida con barreras para impedir la entrada de moleculas del exterior y los investigadores están constantemente tratando de encontrar la manera de hacer pasar moléculas hacia dentro. El profesor Giovanni Maglia de la Universidad Católica de Lovaina y su equipo han diseñado unos nanoporos que actúan como unas puertas giratorias selectivas a través de la membrana lipídica de una célula. Los nanoporos podrían ser utilizados en la terapia génica y la entrega de fármacos.
Todas las células vivas están encerradas por una membrana lipídica que separa el interior de la célula del medio ambiente exterior. La afluencia de moléculas a través de la membrana celular está estrechamente regulada por proteínas de membrana que actúan como portales específicos para el tráfico de iones y nutrientes. Las proteínas de membrana también pueden ser utilizadas por las células como armas. Dichas proteínas atacan a una célula haciendo hoyos (nanoporos) en las membranas celulares de los enemigos. Los iones y moléculas escapan desde los agujeros, causando finalmente la muerte celular.
Los investigadores están tratando de utilizar nanoporos para hacer pasar ADN o proteínas a través de las membranas. Una vez dentro de una célula, la molécula de ADN podría reprogramar la célula para una acción particular. El profesor Maglia explica que ahora se es capaz de diseñar nanoporos biológicos, pero la parte difícil es la de controlar con precisión el paso de moléculas a través de los nanoporos. No se quiere que el nanoporo deje pasar todo; por el contrario, se quiere limitar la entrada de información genética específica en células específicas.
El Profesor Maglia y su equipo tuvieron éxito en el diseño de un nanoporo que funciona como una puerta giratoria para moléculas de ADN. Ellos han introducido una puerta giratoria selectiva para ADN en la cima de la nanoporos. Llaves específicas de ADN en solución se hibridan a la puerta de ADN y se transportan a través de la nanoporos. Una segunda llave de ADN en el otro lado de la nanoporos libera luego la información genética deseada. Un nuevo ciclo puede entonces comenzar con otra pieza de ADN siempre y cuando se tenga la llave correcta. De esta manera, el nanoporo actúa simultáneamente como un filtro y una cinta transportadora.
En otras palabras, se ha diseñado un sistema de transporte selectivo que se puede utilizar en el futuro para administrar medicamento en la célula. Esto podría ser de uso particular en la terapia génica, lo que implica la introducción de material genético en células degeneradas con el fin de desactivarlas o reprogramarlas. También podría ser utilizado en la entrega de fármacos, que implica la administración de la medicación directamente en la célula.

11 de octubre de 2013

CREAN BACTERIAS CON PROTEINAS A MANERA DE JERINGUILLAS MICROSCÓPICAS PARA LA INSERCIÓN DE PROTEÍNAS TERAPÉUTICAS A CÉLULAS HUMANAS

Científicos del Centro Nacional de Biotecnología (CNB) del CSIC de España han obtenido una patente en los Estados Unidos que les permite utilizar bacterias no patógenas. Las bacterias (E.coli) modificadas tienen en su membrana unas proteínas a modo de jeringuilla con las que son capaces de inyectar anticuerpos de pequeño tamaño (nanoanticuerpos) y otras proteínas con potencial terapéutico (p.ej. enzimas) a células humanas, evitando de esta manera la barrera que representa la membrana plasmática de la célula. 
En el caso de usar nanoanticuerpos, estos se podrían unir dentro de la célula a una proteína diana que participase en un proceso patológico para inactivar su función. 
Para comprobar la viabilidad de esta tecnología, el grupo dirigido en el CNB por el doctor Luis Ángel Fernández introdujo estos nanoanticuerpos en el citoplasma de células humanas demostrando que se unían especificamente a su proteína diana.
Una de las principales ventajas de este sistema es que la producción de los nanoanticuerpos la realiza la propia bacteria de manera continua, lo que podría reducir el coste y el número de dosis necesario para administrar estos anticuerpos de forma efectiva. 
Fernández recalca además su seguridad, ya que la inyección de los anticuerpos por parte de E. coli no conlleva ni la invasión de la células por parte de las bacterias ni la transferencia de manterial genético, al contrario que lo que ocurre con virus modificados. 
El objetivo actual de este grupo de investigación es combinar estas jeringas moleculares en bacterias "probióticas" con nuevas modificaciones de forma que actuasen en el intestino y otras mucosas del organismo como auténticos "microrrobots" dirigidos tanto para la detección como el tratamiento in situ de lesiones de tipo inflamatorio o tumoral.

10 de agosto de 2013

DESARROLLAN NUEVOS FÁRMACOS DE ARN PARA TRATAR GENES ANTES INALCANZABLES

Una nueva clase de medicamentos permitiría a los médicos despertar genes que no rinden como deberían en pacientes que no tienen otras opciones de tratamiento en la actualidad.
La start-up RaNA Therapeutics de Boston en Estados Unidos, está desarrollando una nueva clase de medicamento capaz de potenciar la actividad de genes que pueden estar silenciados o poco activos y por lo tanto pueden causar enfermedades. El medicamento usaría una pequeña molécula parecida al ARN que bloquea la función de una molécula de ARN larga que impide la expresión del gen en cuestión.
Al activar los genes, los medicamentos de RaNA podrían hacer algo completamente nuevo, según Jeannie Lee, bióloga molecular de la Facultad de Medicina de la Universidad de Harvard en Estados Unidos, y fundadora científica de la empresa. La mayoría de los fármacos funcionan cambiando la función o estabilidad de un producto genético, bloqueando una enzima demasiado activa, por ejemplo. Las terapias actuales actúan sobre algo que ya se ha expresado, explica Lee, en la actualidad no existen métodos para activar un gen silenciado.
La tecnología de RaNA, que aún está en fase de ensayo con animales de laboratorios, podría usarse para tratar tanto cánceres como enfermedades genéticas raras. A menudo, parte de los cambios que tienen lugar en una célula cancerosa incluyen el silenciado de los genes supresores de tumores. Y en algunas enfermedades genéticas, un gen normal puede estar silenciado por alguna anomalía, o simplemente tener una expresión débil.
El enfoque de RaNA también podría servir para atacar enfermedades metabólicas complejas. En el caso de la diabetes y de otras enfermedades metabólicas, hay muchos objetivos distintos identificados, así que la posibilidad de entrar dentro y activar selectivamente un único gen tendrá aplicaciones terapéuticas muy amplias.
En experimentos de laboratorio, RaNA ha logrado toda una gama de efectos sobre la expresión de los genes, desde la multiplicación aumento por cuatro hasta la multiplicación por cien. Varía de gen a gen y no es inusual que la expresión se multiplique por diez.

17 de julio de 2013

CREAN RATONES GENÉTICAMENTE MODIFICADOS CON CROMOSOMAS ARTIFICIALES HUMANOS PARA TERAPIA GÉNICA

Durante un estudio no publicado, unos investigadores crearon en el laboratorio un cromosoma humano artificial (HAC, por sus siglas en inglés), utilizando bloques de construcción químicos, algo que resulta significativo de la tecnología cada vez más avanzada del nuevo campo de la biología sintética. 
Es la primera vez que se ha creado 'desde cero' una forma tan avanzada de un cromosoma humano sintético hecho para trabajar en un modelo animal según ha declarado Natalay Kouprina, del Instituto Nacional del Cáncer de EE.UU., miembro del equipo científico que creó los ratones con HAC. 
La científica ha explicado que el propósito del desarrollo de este proyecto es crear un vector de transporte para la entrega de genes a células humanas para estudiar su función en ellas y potencialmente esto tiene aplicaciones para la terapia génica, que puede realizar la corrección de la deficiencia génica en los seres humanos pues se sabe que hay un montón de enfermedades hereditarias debido a la mutación de ciertos genes. 
Según los investigadores, el HAC es también conocido como 'cromosoma 47', porque el complemento normal de cromosomas en las células humanas es de 46. Una gran ventaja en la terapia génica es que el cromosoma artificial 47 no interfiere con los otros 46, a diferencia de la terapia génica convencional, donde un gen adicional a menudo se inserta al azar en el genoma humano. 
Según afirma Kouprina la idea es tomar células de la piel de un paciente, convertirlas en células madre e introducir HAC en estas células con copias sanas del gen que produce la enfermedad. Entonces volver a insertar estas células con el cromosoma extra en el paciente para el tratamiento de la enfermedad.  
Es evidente que hay un largo camino por recorrer antes de que se pueda utilizar el HAC para el tratamiento de enfermedades genéticas en humanos. Sin embargo, esta es un área interesante para la exploración científica con grandes beneficios potenciales.