"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta GENES. Mostrar todas las entradas
Mostrando entradas con la etiqueta GENES. Mostrar todas las entradas

24 de enero de 2015

AVANCES EN LA COMPRENSION DE LAS INTRINCADAS REDES REGULADORAS DE LOS GENES QUE CONTROLAN EL ENGROSAMIENTO DE LA PARED CELULAR VEGETAL PODRÍAN LLEVAR A MEJORAR LA EFICIENCIA EN LA PRODUCCIÓN DE BIOCOMBUSTIBLES

Unos genetistas especializados en plantas que incluyen a Sam Hazen de la Universidad de Massachusetts Amherst, y Siobhan Brady de la Universidad de California, han resuelto las redes reguladoras de los genes que controlan el engrosamiento de la pared celular por la síntesis de tres polímeros, la celulosa, la hemicelulosa y la lignina.
Los autores dicen que el más rígido de los polímeros, la lignina, representa un gran obstáculo para extraer los azúcares de la biomasa vegetal que pueden ser utilizados para producir biocombustibles. Se espera este avance sirva como base para la comprensión de la regulación de un componente vegetal integral y complejo (pared celular) y como un mapa de cómo los futuros investigadores podrían manipular los procesos formadores de polímeros para mejorar la eficiencia de la producción de biocombustibles.
Los tres polímeros claves, que se encuentran en tejidos vegetales conocidos como xilema, proporcionan a las plantas resistencia mecánica y de células resistentes al agua que transportan el liquido elemento. Trabajando en la planta modelo Arabidopsis thaliana, Hazen, Brady y sus colegas exploraron cómo un gran número de factores de transcripción interconectados regulan el engrosamiento del xilema y de la pared celular.
Entender cómo se controlan las proporciones relativas de estos biopolímeros en el tejido vegetal abriría oportunidades para rediseñar las plantas para el uso de biocombustibles.En este estudio se identificaron cientos de nuevos reguladores los cuales ofrecen una importante visión de la regulación del desarrollo de la diferenciación de las células del xilema.
En concreto, usando una serie de sistemas para identificar las interacciones proteína-DNA, ellos realizaron el barrido de más de 460 factores de transcripción expresados en el xilema de la raíz para explorar su capacidad de unirse a los promotores de unos 50 genes que se sabe están involucrados en los procesos que producen los componentes de la pared celular. Hazen indica que esto reveló una red altamente interconectada de más de 240 genes y más de 600 interacciones proteína-DNA que no se habían conocido antes.
Ellos también encontraron que cada gen de la pared celular en la red reguladora del xilema está unido a un promedio de cinco factores de transcripción diferentes de 35 familias distintas de proteínas reguladoras. Además, muchos de los factores de transcripción forman un número sorprendentemente grande de bucles feed-forward que coregulan los genes diana.
En otras palabras, en lugar de una serie de interruptores de encendido y apagado que conduce a una acción final como la fabricación de celulosa, la mayoría de las proteínas, incluyendo los reguladores del ciclo celular y la diferenciación se unen directamente a los genes de celulosa y a otros reguladores de la transcripción. Esto le da a las plantas un gran número de posibles combinaciones para responder y adaptarse al estrés ambiental, tales como la sal o la sequía, señalan los autores.
Aunque este estudio pudo identificar nodos interactivos, las técnicas utilizadas no fueron capaces de permitir a los autores determinar exactamente que tipos de bucles fee-forward están presentes en la red de regulación del xilema. Sin embargo, el trabajo ofrece un marco para futuras investigaciones que deberian permitir a los investigadores identificar maneras de manipular esta red y diseñar cultivos energéticos para la producción de biocombustibles.

29 de diciembre de 2014

LOGRAN PRODUCIR TRECE NUEVOS TERPENOS EN STREPTOMYCES MEDIANTE EL ANÁLISIS DE BASES DE DATOS DE GENOMAS DE UN GRUPO DE BACTERIA

Los terpenos son compuestos aromáticos responsables de los diferentes aromas de los aceites esenciales de las plantas y de las resinas de los árboles. Desde el descubrimiento de los mismos hace más de 150 años, los científicos han aislado unos 50.000 diferentes compuestos terpénicos derivados de plantas y hongos. Las bacterias y otros microorganismos son conocidos también por hacer terpenos, pero han recibido mucho menos atención.
Una nueva investigación de la Universidad de Brown, Estados Unidos, muestra que la capacidad genética de las bacterias para hacer terpenos está muy extendida. Usando una técnica especializada para tamizar a través de las bases de datos genómicas de una variedad de bacteria, los investigadores encontraron 262 secuencias de genes que probablemente codifican para terpeno sintasas (enzimas que catalizan la producción de terpenos). Luego, los investigadores utilizaron varias de aquellas enzimas para aislar 13 terpenos de origen bacteriano no identificados previamente. Los hallazgos sugieren que las bacterias representan una fuente fértil para el descubrimiento de nuevos productos naturales.
David Cane, profesor de química en la Universidad de Brown, comenzó a trabajar hace unos 15 años para entender cómo las bacterias hacen terpenos. En ese momento, las primeras secuencias genómicas de ciertas clases de bacterias estaban empezando a salir. Cane y sus colegas tuvieron la idea de encontrar las enzimas responsables de producir terpenos mirando las secuencias de los genes que estaban siendo descubiertas.
Para ello, Cane buscó a través de los datos genómicos recopilados para un grupo de bacterias llamadas Streptomyces, en busca de secuencias similares a las conocidas que expresan la terpeno sintasas en plantas y hongos. Finalmente, se encontró que, efectivamente, los Streptomyces tienen genes que codifican terpeno sintasas y que esas enzimas podrían ser utilizadas para hacer terpenos.
Las secuencias bacterianas verificadas que encontró Cane permitieron a otros investigadores refinar las búsquedas posteriores de genes adicionales de terpeno sintasas utilizando las secuencias bacterianas como consulta de búsqueda en vez de las secuencias de plantas o secuencias de hongos, lo que debería dar un mayor grado de similitud.
El siguiente paso fue verificar que estas secuencias, efectivamente codifican para enzimas capaces de hacer terpenos. Probar todos los 262 genes no era práctico, por lo que el equipo eligió algunos que podrían darles la mejor oportunidad de encontrar compuestos terpénicos que anteriormente no habían sido identificados. Buscaron secuencias que no parecen encajar claramente en categorías previamente conocidas de terpenos.
Después de haber seleccionado unos cuantos, el equipo hizo uso de una bacteria Streptomyces genéticamente modificada como una biorefinería para generar terpenos. En dicha bacteria se eliminaron los genes que son responsables de producir la mayoría de sus productos nativos, pero dejaron detrás toda la capacidad para proporcionar los materiales de partida y manejar la acumulación de productos.
Al tomar algunas de las secuencias de genes que encontraron y empalmándolos en su organismo de ensayo, los investigadores pudieron dejar que las Streptomyces generen el producto usando las instrucciones del nuevo gen introducido. Usando este método, fueron capaces de producir 13 terpenos previamente desconocidos, cuyas estructuras se verificaron por espectrometría de masas y espectroscopia de resonancia magnética nuclear.
Cane comenta que es un gran paso hacia adelante en el área, ya que proporciona un paradigma de cómo se puede descubrir muchas sustancias nuevas; también es un buen ejemplo de cómo se puede utilizar el análisis de secuencias para identificar genes de interés y luego aplicar técnicas genéticas, moleculares y microbiológicas para producir sustancias químicas de interés. El trabajo también sugiere que puede haber muchos productos terpénicos nuevos escondidos y aún por descubrir en los genomas de bacterias.

14 de noviembre de 2014

MODIFICAN GENÉTICAMENTE UNA CEPA DE LEVADURA QUE LA HACE MÁS TOLERANTE AL CALOR PARA UNA ELABORACIÓN MÁS EFICIENTE Y BARATA DE ETANOL

Con una simple mutación, la levadura usada en la producción de bioetanol para vehículos puede crecer con normalidad pese a estar expuesta a temperaturas superiores a las normales. Unos científicos de instituciones suecas y danesas lo han demostrado en una investigación reciente. Los resultados de esta podrían conducir hacia una elaboración más eficiente y barata de etanol como combustible para vehículos, así como incrementar la posibilidad de utilizar desechos vegetales como materia prima.
Con las levaduras convencionales, si la temperatura de su proceso industrial de cultivo no es reducida, las células de levadura mueren por el calor que ellas mismas producen. El cultivo de levadura actualmente se refrigera hasta una temperatura de 30 grados, la cual resulta óptima para que las células de levadura hagan su trabajo, producir etanol.
Sin embargo, la producción de bioetanol podría ser menos costosa y más eficaz si se pudiera mantener la temperatura a 40 grados. Se podría ahorrar una gran cantidad de dinero por costes de refrigeración, y se reduciría el riesgo de crecimiento bacteriano. Además, la materia prima, por ejemplo almidón, debe descomponerse en azúcares que la levadura pueda utilizar, un proceso que funciona mejor a temperaturas altas.
El equipo internacional de Jens Nielsen, profesor en la Universidad Chalmers de Tecnología en Suecia, ha resuelto ahora este asunto, identificando un modo de hacer a la levadura más resistente al calor. Para lograrlo basta con una mutación.
La levadura tiene una sustancia en su membrana celular llamada ergosterol, en lugar del colesterol que tenemos los humanos. La mutación en el gen C-5 sterol desaturasa intercambia el ergosterol por una sustancia llamada fecosterol. Esto tiene varios efectos diferentes en las células, lo cual permite que la levadura se desarrolle a 40 grados.
Una característica importante de las nuevas cepas de levadura es que son estables, o sea que trasmiten su tolerancia al calor a las generaciones posteriores.
La producción actual de bioetanol se basa bastante en la remolacha y el maíz. Este etanol, valorado en más de 100.000 millones de dólares al año, se produce en la actualidad usando levadura. Si se introdujera una mejora, incluso pequeña, en el proceso, se podrían ahorrar millones de dólares cada año.

3 de octubre de 2014

MEDIANTE INGENIERÍA GENÉTICA EN ESPECIES DE ARBOLES LEÑOSOS SE HA AUMENTADO SU PRODUCCIÓN DE BIOMASA IMPORTANTE EN EL SECTOR DE BIOENERGÍA

Gracias a la biotecnología, los investigadores de la Universidad Politécnica de Madrid (UPM) han aumentado la producción de especies leñosas. Este resultado es de gran interés para el mercado de la energía. 
Mediante la modificación de la expresión de los genes responsables de la creación de ramas durante el primer año de especies leñosas, los investigadores del Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA), de la  UPM y el Instituto Nacional para la Investigación y Experimentación Agrícola (INIA), han encontrado una manera de aumentar la producción de biomasa de una plantación forestal, sin alterar su crecimiento, ni la composición o anatomía de la madera. Estos resultados tienen un importante valor de mercado para el sector de la bioenergía, por lo que este estudio ha sido protegido por una patente. 
Las yemas laterales de la mayoría de las especies leñosas en áreas cálidas y frías no brotan en la misma temporada en la que han nacido. Estos brotes, llamados prolépticos, permanecen latentes y no crecen hasta la primavera siguiente. Sin embargo, algunos brotes laterales brotan durante la misma temporada como en los álamos yotras especies salicáceas y muchas especies tropicales. De esta manera, una ramificación siléptica puede aumentar la cantidad de ramas, el área foliar y el crecimiento de los árboles en general, sobre todo durante sus primeros años de vida. 
Sobre esa base, los investigadores de la UPM han utilizado un procedimiento biotecnológico para modificar los niveles de expresión génica del gen RAV1 que incrementa el desarrollo de ramificación siléptica de especies leñosas. De esta manera, los investigadores han encontrado una manera de aumentar la producción de biomasa de una plantación de álamo. Este proceso de modificación genética es potencialmente aplicable a cualquier especie leñosa y usa sus características de adaptación a un hábitat particular. 
El procedimiento biotecnológico utilizado por estos investigadores puede garantizar los rendimientos de producción sostenible de biomasa de especies leñosas sin afectar a la demanda de alimentos. Estos resultados pueden también mitigar los efectos del calentamiento global y mejorar la seguridad energética.

30 de agosto de 2014

PLANTEAN HACER USO DE BACTERIAS INTESTINALES GENÉTICAMENTE MODIFICADAS COMO PROBIÓTICOS PARA PREVENIR Y TRATAR LA OBESIDAD Y OTROS ENFERMEDADES CRÓNICAS

Investigadores de la Universidad de Vanderbilt, Estados Unidos, han descubierto bacterias que producen un compuesto terapéutico en el intestino que inhiben el aumento de peso, la resistencia a la insulina y otros efectos adversos de una dieta alta en grasa en ratones experimentales.
El investigador principal Sean Davies, Ph.D. y profesor adjunto de Farmacología, afirma que en esencia se ha evitado la mayoría de las consecuencias negativas de la obesidad en ratones, incluso aunque ellos hayan estado comiendo una dieta alta en grasas.
Ciertos temas reglamentarios deben ser abordados antes de pasar a estudios en humanos, pero los resultados sugieren que puede ser posible manipular las bacterias residentes en el intestino para tratar la obesidad y otras enfermedades crónicas.
Davies tiene un interés de largos años en usar bacterias probióticas (bacterias amigables como las de yogurt) para suministrar fármacos al intestino de una manera sostenida, con el fin de eliminar los regímenes diarios de medicamentos asociados a las enfermedades crónicas.
Otros estudios han demostrado que la microbiota natural del intestino juega un papel importante en la obesidad, la diabetes y en las enfermedades cardiovasculares, por lo que Davies y su equipo se preguntaron si se podría manipular la microbiota intestinal de una manera que promueva la salud y no implique riesgo de contraer enfermedades crónicas.
Para empezar, el equipo necesitaba una cepa bacteriana segura que coloniza el intestino humano. Ellos seleccionaron la cepa E. coli Nissle 1917, que ha sido utilizado como tratamiento probiótico para la diarrea desde su descubrimiento hace casi 100 años.
Ellos modificaron genéticamente la cepa de E. coli para producir un compuesto lipídico llamado NAPE, que normalmente se sintetiza en el intestino delgado en respuesta a la alimentación. El NAPE se convierte rápidamente en NAE, un compuesto que reduce tanto la ingesta de alimentos como el aumento de peso. Alguna evidencia sugiere que la producción de NAPE puede ser muy reducida en los individuos que comen una dieta alta en grasas.
Los investigadores añadieron las bacterias productoras de NAPE al agua de los ratones que comieron una dieta alta en grasas durante ocho semanas. Los ratones que recibieron las bacterias modificadas tenían una dramáticamente menor ingesta de alimentos, grasa corporal, resistencia a la insulina e hígado graso en comparación con los ratones que recibieron las bacterias de control.
Ellos encontraron que estos efectos protectores persistieron durante al menos cuatro semanas después de que las bacterias productoras de NAPE fueran removidas del agua. Incluso doce semanas después de retiradas las bacterias modificadas, los ratones tratados aún tenían un peso y grasa corporal mucho más bajo en comparación con los ratones de control. Las bacterias activas ya no persistieron después de unas seis semanas.
Como comentó Sean Davies, todavía no han logrado su objetivo final, el cual sería hacer un solo tratamiento para luego no tener que administrar bacterias nuevamente. Ellos consideran que se puede obtener suficientes bacterias para que persistan en el intestino y tengan un efecto sostenido, es decir, un efecto que dure más tiempo.
Sean Davies señaló además que su equipo también observó efectos de los compuestos en el hígado, lo que sugiere que puede ser posible usar bacterias modificadas para entregar agentes terapéuticos más allá del intestino.
Actualmente, los investigadores están trabajando en estrategias para abordar los temas reglamentarios relativas a la contención de las bacterias, por ejemplo, silenciando genes requeridos por los microorganismos para vivir fuera del huésped tratado.

31 de julio de 2014

CREAN UN BIOSENSOR PARA LA OPTIMIZACIÓN DE PROCESOS DE BIORREFINERÍA INVOLUCRADOS EN DIFERENTES INDUSTRIAS

Un nuevo biosensor inventado en la Universidad de Columbia Británica (UBC) podría ayudar a optimizar los procesos de biorrefinería que producen combustibles, productos químicos y otros materiales. El mismo funciona mediante la detección de redes bacterianas naturales que están conectadas genéticamente para degradar la lignina de la madera.
La lignina actualmente obstaculiza los procesos de biorrefinería industrial. El microbiólogo de la UBC, Steven Hallam comenta que la naturaleza ya ha inventado procesos microbianos para degradar la lignina y que ellos, los investigadores, solo tenían que hacer el trabajo de detectives, y desarrollar el correcto juego de herramientas para aislar estos procesos de las comunidades microbianas que están de forma natural en los yacimientos de carbón.
Desarrollado por Hallam y su equipo, el biosensor realiza un screening de ADN a partir de muestras ambientales para aislar la maquinaria genética de degradación de la lignina codificado en los microbios residentes de las muestras.
Hallam indica además que las bacterias encontradas usan circuitos genéticos adaptativos para descomponer la lignina y que estos circuitos  pueden movilizarse en la naturaleza a través de la transferencia horizontal de genes. El biosensor y el screening permiten descubrir esta red genética, y luego optimizarlo en el laboratorio.
Cameron Strachan, otro investigador de la UBC, dice que se debe permanecer sensible a la complejidad de los procesos naturales que actúan sobre la lignina, sin embargo este proyecto ha desenterrado algunos principios básicos que permitirán explotar los procesos microbianos más rápidamente para cualquier número de aplicaciones de ingeniería.
El sensor, el screening y el sistema de circuitos geneticos adaptativos descubiertos por ellos, han sido autorizados a través de la University Industry Liaison Office. Además, una empresa derivada, guiada por el programa e@UBC, está buscando la forma de aumentar la escala de producción de esta tecnología.
La mayoría de los agentes utilizados en la biorrefineria estan basados en enzimas diseñadas a partir de hongos. En este caso, los investigadores de la UBC utilizaron el innovador screening a la fuente y arrays genéticos de las bacterias que habitan en los yacimientos de carbón. El biosensor reacciona a un conjunto de pequeñas moléculas que son el residuo del proceso de degradación natural de la lignina. Los investigadores suponieron que el carbón (madera antigua y biomasa vegetal depositada antes de la evolución de las vías de degradación de la lignina por hongos) podría contener rutas metabólicas bacterianas involucradas en el proceso de transformación.

15 de junio de 2014

DISEÑAN BACTERIAS MODIFICADAS GENÉTICAMENTE PARA LA CONVERSIÓN DIRECTA DE BIOMASA A BIOCOMBUSTIBLE

La promesa de los combustibles asequibles a partir de biomasa ha sido dejado perpetuamente en suspenso por los costos del proceso de conversión. Una nueva investigación de la Universidad de Georgia (UGA) ha superado este obstáculo que permite la conversión directa del pasto varilla (hierba nativa de Norteamérica) en combustible.
El estudio documenta la transformación directa de la biomasa en biocombustible sin tratamiento previo, utilizando la bacteria Caldicellulosiruptor bescii genéticamente modificada.
El pretratamiento de la materia prima de biomasa (cultivos no alimentarios como el mijo) consiste en romper las paredes celulares de la planta antes de la fermentación en etanol. Esta etapa de pretratamiento ha sido por mucho tiempo el cuello de botella económico que dificulta la producción de combustibles a partir de materias primas de biomasa lignocelulósica.
Janet Westpheling, profesora en el departamento de genética del Colegio Franklin de Artes y Ciencias, y su equipo de investigadores, miembros del Centro de Ciencias de la BioEnergía (BESC), tuvieron éxito en la modificación genética de la bacteria C. bescii para desensamblar la biomasa vegetal sin tratamiento previo.
Westpheling pasó dos años y medio en el desarrollo de métodos genéticos para la manipulación genética de la bacteria C. bescii  y que haga posible el trabajo actual. Ella afirma que la parte mas dificil de enseñar al microorganismo fue la de cómo desensamblar la biomasa.
El grupo de investigación de la UGA diseñó una ruta sintética en la bacteria, introduciendo genes de otra bacteria anaerobia que producen etanol, y construyeron una ruta en el microbio para producir etanol directamente.
Westpheling comenta que ahora, sin ningún tratamiento previo, se puede simplemente tomar el pasto varilla, molerlo, añadir un medio mínimo de sales de bajo costo, y obtener etanol. Este es el primer paso hacia un proceso industrial económicamente factible.
La recalcitrancia de la biomasa vegetal para la producción de combustibles evolucionó en las plantas durante millones de años, y es resultado de sus paredes celulares rígidas que han sido la clave de su supervivencia y el principal obstáculo para la producción de biocombustibles. El entender la base científica y en última instancia eliminar la recalcitrancia ha sido la misión central de los investigadores.
Paul Gilna, director del Centro de Ciencias de la BioEnergía (BESC), cometa que tomar un organismo prácticamente desconocido y sin caracterizar y utilizar técnicas de ingeniería para producir un biocombustible de elección en el plazo de unos pocos años es un logro científico imponente para el grupo de la Dr. Westpheling y para BESC.
Las bacterias Caldicellulosiruptor se han aislado alrededor del mundo, desde un manantial caliente en Rusia al Parque Nacional de Yellowstone en Estados Unidos. Westpheling explicó que muchos microbios en la naturaleza demuestran capacidades preciadas en la química y la biología, pero que desarrollar los sistemas genéticos para usarlos es el reto más importante. La biología de sistemas permite el diseño de rutas artificiales dentro de organismos que les permiten hacer cosas que ellos no pueden hacer de otra manera.
El etanol no es más que uno de los productos que se le puede enseñar a la bacteria a producir. Otros productos incluyen butanol e isobutanol, así como otros combustibles y productos químicos que utilizan la biomasa como una alternativa al petróleo.

5 de junio de 2014

AVANCES EN EL DESARROLLO DE UNA VACUNA CONTRA LA MALARIA MEDIANTE EL USO DE PARÁSITOS GENÉTICAMENTE MODIFICADOS

Investigadores de Seattle BioMed anunciaron que han desarrollado una nueva generación de parásitos genéticamente atenuados (GAP) que podrían constituir el camino hacia una vacuna altamente protectora contra la malaria.
La malaria es causada por parásitos Plasmodium que se transmiten a los humanos por la picadura de mosquitos. Aunque las medidas de control, tales como mosquiteros, se implementan cada vez más, no existe ninguna vacuna eficaz capaz de erradicar la enfermedad.
El trabajo de los investigadores describe el desarrollo de parásitos de la malaria genéticamente modificados que son debilitados por la remoción precisa de genes y diseñados para prevenir eficazmente que el parásito induzca una infección en los seres humanos. Estos parásitos atenuados genéticamente son incapaces de multiplicarse, pero están vivos y capaz de estimular eficazmente el sistema inmune para construir defensas que prevengan la infección patógena. Si bien las vacunas ha demostrado ser muy eficaz en la protección contra los virus y bacterias, estas siguen siendo un enfoque nuevo en la lucha contra los parásitos.
Stefan Kappe, Ph.D., autor y profesor correspondiente de Seattle BioMed afirma que si bien la vacunación con parásitos vivos atenuados es capaz de proporcionar una protección completa contra la infección de la malaria, es imperativo que se pueda inutilizar permanentemente el complejo parásito de la malaria de modo que no pueda causar la enfermedad, y en su lugar, preparar eficazmente el sistema inmunológico.
La cepa GAP de primera generación (Ver aqui) tenía dos genes extraídos del parásito, pero esta nueva técnica, desarrollada en colaboración con científicos del Instituto Walter y Eliza Hall, en Australia, elimina tres genes independientes asociados con la patogenicidad del parásito, derogando de manera efectiva su capacidad de establecer una infección en los seres humanos.
El siguiente paso es probar la seguridad y eficacia de este parásito atenuado en los ensayos clínicos de una manera muy eficiente. El Centro de Ensayos Clínicos de Seattle BioMed es uno de los cuatro centros en el mundo aprobado para probar con seguridad y eficacia nuevos tratamientos contra la malaria y vacunas en seres humanos mediante el modelo de exposición humana a la malaria.

29 de mayo de 2014

CIENTÍFICOS LOGRAN UN SIGNIFICATIVO AVANCE PARA LA OBTENCIÓN DE UNA VACUNA CONTRA EL VIH, MEDIANTE LA MODIFICACIÓN GENÉTICA DEL VIRUS

Utilizando una forma modificada genéticamente del virus del VIH, un equipo de científicos de la Universidad de Nebraska-Lincoln ha desarrollado un nuevo y prometedor avance que algún día podría conducir a una vacuna más eficaz contra el VIH.
El equipo, dirigido por el químico Jintao Guo, el virólogo Qingsheng Li y la bióloga sintética Wei Niu, ha probado con éxito el nuevo avance para el desarrollo de vacunas in vitro.
Con este nuevo avance, el equipo de la UNL es capaz de utilizar un virus del VIH atenuado o debilitado en la vacuna. Jintao Guo afirma que el nuevo método implica la manipulación de los codones del virus para que este dependa de un aminoácido no natural para la traducción de la proteína adecuada, lo que le permite replicar. Debido a que este aminoácido no está presente en el cuerpo humano, el virus no puede seguir reproduciéndose y causar la enfermedad.
La inmunidad adaptativa se desarrolla cuando el sistema inmune del cuerpo desarrolla anticuerpos que atacan al virus. Al virus luego se le interrumpe la replicación mediante la eliminación de los aminoácidos.
Dado que la pandemia del VIH/SIDA se inició en la década de 1980, se estima que 36 millones de personas han muerto por la enfermedad. Hoy en día, más de 35 millones de personas viven con el virus y 2,5 millones de nuevas infecciones se registran cada año. No existe ninguna cura universal o vacuna, principalmente debido a la replicación y evolución persistente del virus.
El intento de vacunación de más éxito en los seres humanos fue un ensayo en Tailandia a mediados de la última década que tenía una tasa de eficacia más o menos del  31%. Pero aquella vacuna utilizaba versiones diseñadas de los genes y proteínas del VIH, en lugar del virus real.
Li indica que la ciencia nos dice que una vacuna viva atenuada funcionaría mejor para detener la pandemia, y posiblemente erradicar la enfermedad, pero, usar un virus vivo en un juicio humano tiene problemas de seguridad. 
Usar un virus atenuado en una vacuna no se ha logrado antes porque el VIH, incluso en forma debilitada, replica rápidamente, lo que le permite evolucionar rápidamente y recuperar la virulencia y su habilidad para causar la enfermedad.

17 de mayo de 2014

OBTIENEN BIOCOMBUSTIBLE PARA COHETES MEDIANTE LA MODIFICACIÓN GENÉTICA DE BACTERIAS E. COLI

Gracias a bacterias manipuladas genéticamente, se ha conseguido producir un biocombustible alternativo y lo bastante energético como para impulsar a un motor cohete.
La síntesis bacteriana de pineno abre nuevas y fascinantes perspectivas en el sector de los biocombustibles. El pineno es un hidrocarburo proveniente de los árboles que podría llevar a sustituir por alternativas sostenibles a combustibles de origen fósil y alta energía como el JP-10, un combustible usado en vehículos aeroespaciales, incluyendo misiles. Con las mejoras adecuadas en la eficiencia de su proceso de elaboración, el biocombustible podría facilitar incluso el desarrollo de una nueva generación de motores más potentes.
Al conseguir dotar de enzimas de árboles a las bacterias, el equipo de Stephen Sarria y Pamela Peralta-Yahya, del Instituto Tecnológico de Georgia (Georgia Tech), ubicado en la ciudad estadounidense de Atlanta, ha logrado multiplicar por seis la producción de pineno, en comparación con el nivel de producción alcanzado en investigaciones anteriores de bioingeniería.
Aunque será necesaria una mejora más drástica antes de que los dímeros de pineno puedan competir con el JP-10 elaborado a partir de petróleo, el equipo de Sarria y Peralta-Yahya cree que ha identificado los principales obstáculos a superar para alcanzar ese objetivo.
Mediante la estrategia de tomar colonias de bacterias E. coli modificadas genéticamente para producir pineno y colocarlas dentro de tubos de ensayo conteniendo glucosa, los investigadores han conseguido determinar qué combinaciones de enzimas producen con mayor eficiencia el hidrocarburo.Ellos obtuvieron 28mg/l mediante la mejor combinacion de la expresion  de tres enzimas pineno sintasas y tres enzimas geranil difosfato sintetasas.
Los combustibles con alta densidad de energía son importantes en aplicaciones en las que la reducción del peso del combustible es fundamental. La gasolina utilizada para los automóviles y el gasóleo utilizado principalmente en camiones contienen menos energía por litro que el JP-10.

4 de mayo de 2014

EMPLEAN BACTERIAS MODIFICADAS PARA LA PRODUCCIÓN DE ÉSTERES DE IMPORTANCIA INDUSTRIAL A PARTIR DE BIOMASA RENOVABLE

Desde una fragancia de flores que parece traída por la brisa matinal, hasta el aroma de arándanos a punto de ser comidos, los perfumes que se perciben en el laboratorio de Shota Atsumi del Departamento de Química en la Universidad de California en la ciudad estadounidense de Davis, parecen fáciles de identificar, pero su origen no es el que podríamos suponer. Ni flores, ni bayas, ni otras de las fuentes tradicionales de esas fragancias son el origen de los aromas elaborados en el laboratorio. Los artífices de los olores son nada más ni nada menos que bacterias, modificadas para que realicen trabajos químicos de perfumería.
Concretamente, estas bacterias producen ésteres, que son sustancias ampliamente usadas para colonias y aromatizantes, así como también en procesos químicos para elaborar pinturas, combustibles y otros productos.
Infinidad de sustancias químicas industriales derivan de combustibles fósiles. El equipo de Atsumi aspira a cambiar esta situación, desarrollando una vía, industrialmente útil, para elaborar productos equivalentes pero hechos a partir de recursos renovables.
Los ésteres son moléculas en las que dos cadenas de átomos de carbono están enlazados a través de un átomo de oxígeno. Están hechos químicamente por la reacción de un alcohol con un ácido orgánico. Pero la termodinámica de esta reacción significa que tiende a funcionar en sentido contrario; es más fácil descomponer un éster que formarlo.
Las células vivas pueden también fabricar ésteres. Por ejemplo, las levaduras producen pequeñas cantidades de ésteres que les dan sabores al vino y la cerveza, sin requerir altas temperaturas o condiciones muy especiales. En pocas palabras, la reacción es químicamente difícil pero biológicamente fácil.
La naturaleza utiliza una clase de enzimas llamadas alcohol acetiltransferasas para hacer ésteres a partir de moléculas de acil-coenzima A (acil-CoA). Cambiando la parte acil- de la acil-CoA que entra en la reacción, se cambia el tipo de éster que se produce.
Atsumi, el estudiante graduado Gabriel Rodríguez y el investigador postdoctoral Yohei Tashiro tomaron genes de las vías bioquímicas de las levaduras y los introdujeron en bacterias E. coli, un sistema de prueba fiable para la ingeniería genética. Mediante la modificación de la vía de acil-CoA, ellos pudieron manipular una mitad del éster a producir: mediante el ajuste de la vía que produce alcoholes en la célula; y por el cierre de otras potenciales vías, ellos pudieron ajustar la otra mitad. Por lo tanto, ellos fueron capaces de recoger un éster final producido por las bacterias.
La técnica, que ha sido patentada, abre posibilidades para la producción de muchos ésteres diferentes en sistemas biológicos.  El material de partida para las bacterias está basada en azúcares, que pueden proceder de la biomasa renovable. En última instancia, Atsumi espera diseñar estas vías químicas en las cianobacterias, organismos unicelulares que pueden atraer la energía directamente de la luz solar y el carbono de la atmósfera.

2 de mayo de 2014

AVANCES IMPORTANTES EN EL ENTENDIMIENTO DE LA SIMBIOSIS RHIZOBIUM-LEGUMINOSAS PARA SU FUTURA APLICACIÓN BIOTECNOLÓGICA

Es bien sabido que en los nódulos de las raíces de las leguminosas se encuentran bacterias, por lo general los miembros del género Rhizobium, que rompen el fuerte enlace triple entre las moléculas de nitrógeno en el aire y  vuelven a empaquetar los átomos de nitrógeno en compuestos químicos que la planta puede utilizar. A cambio, la planta suministra a las bacterias con la energía necesaria en forma de azúcar para dividir las moléculas de nitrógeno.
Las asociaciones leguminosas-rhizobium generan más nitrógeno para las plantas que todos los fertilizantes industriales utilizados en la actualidad, y proporcionan la cantidad adecuada de nitrógeno en el momento adecuado.
Por el contrario, la mayor parte del fertilizante sintético aplicado a los campos agrícolas se desperdicia, mojando el suelo y yendo hacia los cursos de agua o evaporándose a la atmósfera en forma de óxido nitroso, convirtiéndose en un riesgo ambiental y un riesgo para la salud.
Los agricultores ya pueden comprar biofertilizantes ricos en rhizobium para aumentar la formación de nódulos y mejorar la calidad del suelo sin fertilizantes sintéticos. Pero los científicos están comenzando a hablar de cultivar plantas de reingeniería para que, como las leguminosas, tengan los sistemas de fijación de nitrógeno, ya sea como nódulos en las raíces o en las propias células de la planta.
Para ello, los científicos necesitan entender los mecanismos biológicos de fijación de nitrógeno tan a fondo como un mecánico entiende las válvulas y pistones del motor de un coche. La diferencia es que la maquinaria biológica es demasiado pequeña para ser visible a simple vista.
La ciencia dio un paso más cerca a este objetivo hace poco, cuando un equipo de la Universidad de Washington en St. Louis elaboró ​​la estructura de una proteína llamada NolR que actúa como un interruptor maestro de apagado para el proceso de nodulación. Mediante la construcción de un modelo atómico exacto de la proteína, ellos fueron capaces de ver exactamente cómo reconoce y encaja éste en los genes para evitar que las bacterias se embarquen en una vida como simbionte.
El proceso de nodulación es muy raro. En primer lugar, las plantas y las bacterias  del suelo se involucran en un diálogo molecular para asegurarse de que son socios compatibles. La planta huésped libera un cóctel de sustancias químicas llamadas flavonoides que son percibidos por una proteína bacteriana llamada NodD, el cual activa los genes nod (de nodulación). Juntos, los genes nod expresan una molécula grande y compleja llamada factor nod.
El factor nod desencadena en la planta la facultad para que esta cree un circuito de infección, o un tubo a través del cual las bacterias se desplazan profundamente en la raíz , en donde están envueltos en una membrana que la planta ha sintetizado y secuestrado en vesículas dentro de las células de la corteza de la raíz de un nódulo. El metabolismo de estas bacterias e incluso su capacidad de reproducción están tan alterados que son como diferentes organismos, por ello son llamados bacteroides en lugar de bacterias.
Los científicos que trabajaron en la genética de la formación de nódulos en la década de los 80s y principios de los 90s, identificaron a NodD, un interruptor maestro de encendido para los genes nod, y a NolR, un interruptor maestro de apagado que actúa incluso en términos más generales, apagando los genes nod , NodD, y otros genes necesarios para la vida como un simbionte.
Segun Joseph Jez, PhD y profesor asociado de biología en Artes y Ciencias de la Universidad de Washington, las bacterias tienen la capacidad de activar un montón de genes para la nodulación y la simbiosis, pero es necesario mantenerlos apagados el tiempo en que son de vida libre y ese es el papel que cumple la proteína NolR.
El trabajo que llevan a cabo estos cientificos consiste en averiguar cómo se pliega la larga y filiforme molécula de proteína en sí misma para formar una maraña de hélices y cintas, y luego cómo la molécula plegada cabe en el ADN y se une con él.
Desafortunadamente, el plegamiento de las proteínas es un problema notoriamente difícil, uno aún más allá del alcance de los cálculos por ordenador. Así que la mayoría de las estructuras proteicas están siendo resueltas por cristalización de la proteína y luego irradiación del cristal con rayos X para localizar los átomos dentro de él.
Jez y luego Lee tomaron el reto de cristalizar la proteina NolR. Lee decidió empezar por el principio eligiendo una secuencia de ADN unida a NolR, ordenando ese corte de ADN, y luego tratando de cristalizar la mezcla de la proteína y el ADN juntos.
Esto debería haber sido más difícil que la cristalización de la proteína sola , pero, para su sorpresa, resultó ser más fácil. Los datos de baja resolución que Lee obtuvo del complejo proteína-ADN hizo más fácil para los científicos interpretar los datos de alta resolución de la proteína sola.
La proteína resultó tener lo que se llama un motivo hélice-giro-hélice que se encuentra comúnmente en las proteínas que se unen al ADN. La doble hélice de ADN tiene un surco mayor y surco menor que corren por la doble hélice como las roscas de un tornillo. Muchas proteínas que se unen al ADN  lo hacen a través del surco mayor más amplio.
El surco mayor es el que está abierto, y se puede ajustar una hélice de proteínas en ese surco. La naturaleza utiliza este dominio hélice-giro-hélice como una forma de posicionar las hélices en los surcos mayores. La proteína es un dímero, por lo que tiene dos hélices que están separadas perfectamente para ponerse una en cada uno de los dos surcos mayores consecutivos.
Para actuar como un interruptor maestro, la NolR tiene que ser capaz de reconocer y unirse a muchos genes diferentes. Es capaz de hacer eso porque cada uno de los genes lleva la misma secuencia de nucleótidos, llamada una secuencia de consenso, en algún lugar a lo largo de su longitud. En este caso, hay dos de tales secuencias en los surcos mayores consecutivos en todos los genes a los que NolR se une.
Los científicos están satisfechos con su progreso , pero sólo les ha hecho tener más ganas de cristalizar la otra proteína : el interruptor maestro de encendido, NodD.

3 de abril de 2014

INVESTIGADORES MODIFICAN GENÉTICAMENTE ÁRBOLES PARA HACER MAS FÁCIL LA PRODUCCIÓN DE PAPEL ENTRE OTROS BENEFICIOS

Investigadores han manipulado genéticamente árboles que serán más fáciles de descomponer para producir papel y biocombustible, un avance que supondrá el uso de menos productos químicos, menos energía y creación de menos contaminantes ambientales.
Uno de los mayores impedimentos para la industria de la  pulpa y el papel, así como la industria emergente de los biocombustibles es un polímero que se encuentra en la madera conocida como la lignina. La lignina constituye una parte sustancial de la pared celular de la mayoría de las plantas y es un impedimento para el procesamiento de la pulpa, del papel y de biocombustibles. Actualmente la lignina debe ser removida, un proceso que requiere significativamente de productos químicos y de energía, además de producir residuos indeseables.
Los investigadores utilizaron la ingeniería genética para modificar la lignina y hacerla más fácil de romper sin afectar negativamente a la fuerza del árbol. Shawn Mansfield, profesor de Ciencias de la Madera de la Universidad de Columbia Británica indica que están modificando los árboles para que sean procesados ​​con menor energía y menos productos químicos , y en última instancia recuperar más carbohidratos de la madera que en la actualidad.
Los investigadores habían intentado previamente hacer frente a este problema mediante la reducción de la cantidad de lignina en los árboles por supresión de genes, que a menudo resultó en árboles con retraso en el crecimiento o eran susceptibles al viento, la nieve, a las plagas y patógenos.
La estructura de la lignina naturalmente contiene enlaces éter que son difíciles de degradar. Los científicos utilizaron la ingeniería genética para introducir enlaces éster en la cadena principal de la lignina los cuales son más fáciles de descomponer químicamente.
La nueva técnica permite que la lignina pueda ser recuperada más eficazmente y usada en otras aplicaciones, tales como adhesivos, fibras de carbono y aditivos para pinturas.
La estrategia de modificación genética empleada en este estudio también podría utilizarse en otras plantas como los pastos los cuales podrían ser utilizados como un nuevo tipo de combustible que reemplace al petróleo.
La modificación genética de este tipo es un tema polémico, pero hay maneras de asegurar que los genes en cuestión no se diseminen al bosque. Estas técnicas incluyen cultivos bajo control lejos de bosques nativos, así la polinización cruzada no sea posible; introducción de genes para hacer solo árboles masculinos o femeninos o en su defecto, plantas estériles; y talar los árboles antes de que alcancen la madurez reproductiva.
En el futuro, los árboles modificados genéticamente podrían ser plantados como un cultivo agrícola, y no en los bosques nativos. El álamo es un cultivo con potencial energético para la industria de los biocombustibles debido a que el árbol crece rápidamente y en tierras agrícolas marginales. 
Por ultimo, Mansfield opina que nuestra sociedad es dependiente del petróleo  pues confiamos en el mismo recurso para todo, desde teléfonos inteligentes a la gasolina. Se tiene que diversificar y aliviar la presión de los combustibles fósiles. Árboles y plantas tienen un enorme potencial para contribuir carbono a nuestra sociedad.

31 de marzo de 2014

DESCUBREN UNA PROTEÍNA QUE PERMITE AUMENTAR LA COSECHA DE TOMATE EN CONDICIONES DE LABORATORIO

Investigadores argentinos y brasileros descubrieron una proteína que permite duplicar el índice de cosecha en plantas de tomate en condiciones de laboratorio mediante la producción de frutos más pesados y en mayor cantidad.
Se trata del producto de un gen que regula el envío de azúcares desde las hojas a los frutos. Así, el descubrimiento de la función de la proteína SPA (Sugar Partition Affecting) abre las puertas al desarrollo de nuevas estrategias para el aumento de la producción de alimentos, señaló la autora principal del trabajo, Luisa Bermúdez.
Por su parte, el investigador adjunto del CONICET (Argentina) y jefe del grupo de genómica estructural y funcional de especies de Solanáceas del Instituto de Biotecnología del INTA Castelar, Fernando Carrari, agregó que este descubrimiento es un aporte modesto al entendimiento de la funcionalidad del genoma de esta especie ya que se trata de entender el rol de un solo gen que, en términos agronómicos, pareciera tener una función importante ya que modifica parámetros productivos.
Al silenciar el gen, la eficiencia en la exportación de azúcares desde las hojas hacia los frutos se duplica ya que, al utilizar los mismos recursos por hectárea (fertilizantes, agroquímicos, riego, etc.), su rendimiento aumenta considerablemente.
Según explicó la investigadora del CONICET que se desempeña en el INTA Castelar, luego de la fotosíntesis, la cantidad de sacarosa que llega a los frutos es regulada, entre otros mecanismos, por complejos proteicos en los cuales participa la SPA y, si bien hay muchos otros factores que afectan este transporte, lo que se vio es que cuando se altera los niveles de esta proteína en tomate, ese pasaje se ve afectado.
De esta manera, cuando los investigadores lo silenciaron se dieron cuenta de que se desarrollaban mayor cantidad de frutos que en las plantas donde estaba expresado.
Esta funcionalidad, o falta de ella, podría ser de gran utilidad para los productores que buscan incrementar cada vez más la eficiencia de los cultivos mediante distintas estrategias relacionadas con el manejo del suelo, la utilización de agroquímicos y las mejoras genéticas.
Bermúdez destacó que estas actividades, al margen de aumentar la producción, alcanzan un punto en el que la cantidad de insumos deja de ser limitante ya que genéticamente estas plantas están programadas para producir una determinada cantidad de frutos.
Por ello, el análisis funcional de los genomas, en combinación con estrategias de ingeniería genética, buscan identificar factores clave relacionados con la calidad y el rendimiento, con el fin de mejorar las especies que se cultivan actualmente a partir de la alteración de genes que ya se encuentran presentes en esa especie, por lo que no son consideradas transgénicas.
En este sentido, sólo en el tomate se conocen hasta hoy cerca de 130 genes candidatos que se encuentran asociados con caracteres de interés agronómico y el equipo de trabajo argentino-brasilero se concentró en los que estaban más relacionados con una mayor productividad y mejor calidad nutricional.
Pero también descubrieron que el gen que produce la proteína SPA estaba relacionado con otros procesos que determinan cuánto carbono fijado por la planta se exporta a los frutos y cuánto es utilizado en los tejidos fotosintéticos.
Actualmente, los equipos argentino y brasilero trabajan en la generación de una patente que les permita probar la existencia y eficacia de esta proteína en ensayos a campo. En este sentido, Bermúdez manifestó que lo esperable es que en esas condiciones las plantas se comporten de la misma manera que lo hicieron en las pruebas de laboratorio ya que la función de la proteína no parece estar directamente relacionada con factores abióticos.
Por último, la investigadora aclaró que, si bien aún no se han realizado pruebas organolépticas sobre los frutos, se observó que algunos contenidos de azúcares se modificaron en los frutos, por lo cual esto podría redundar, a su vez, en tomates con gusto diferencial

26 de febrero de 2014

DESARROLLAN PAPATAS MODIFICADAS GENÉTICAMENTE RESISTENTES AL HONGO PHYTOPHTHORA INFESTANS

Científicos británicos han desarrollado unas patatas modificadas genéticamente que son resistentes a la plaga del hongo Phytophthora infestans, que se considera la mayor amenaza para el tubérculo. Este logro, que ha requerido tres años de estudio, necesita ahora la aprobación de la UE para que se pueda comercializar.
La Phytophthora infestans ha afectado a los agricultores a lo largo de generaciones y fue la responsable de la hambruna irlandesa de la década de 1840. Según explican los expertos, las patatas son especialmente vulnerables a este hongo, que aparece en zonas de gran humedad. La velocidad con la que esta infección se afianza y el impacto que causa son devastadores y pueden llegar a afectar a seis millones de toneladas de las patatas producidas en Reino Unido en un año.
Ante estas cifras, los investigadores del Centro John Innes y el Laboratorio Sainsbury comenzaron a buscar una solución agregando un gen a las patatas, de un pariente silvestre de América del Sur. A su juicio, el uso de técnicas para agregar genes extra fue crucial en el desarrollo de una planta resistente a la plaga.
Jonathan Jones, autor principal del estudio, señala que la cría de parientes silvestres es laboriosa y lenta, y para cuando un gen se introdujo con éxito en una variedad cultivada ya puede haber desarrollado la capacidad para superar la plaga.
En 2012, el tercer año de la prueba, todas las patatas no modificadas genéticamente se infectaron con el tizón tardío de agosto, mientras que los vegetales modificados permanecieron totalmente resistentes al final del experimento. Hubo también una diferencia en el rendimiento, con la nueva variedad se produjo el doble de cantidad de tubérculos.
Lo que los autores del trabajo no pueden comentar es el sabor de estas patatas, ya que se les prohibió comer la variedad transgénica. Sin embargo, aseguran que los nuevos genes no tienen por qué afectar al sabor.
Jones concluye que el balance será a favor de los agricultores. Puede que tengan que pagar más por la semilla, pero van a ahorrar en fungicida.

6 de febrero de 2014

MEDIANTE LA APLICACIÓN DE LA GENÓMICA SE BUSCA NUEVOS GENES CAPACES DE SINTETIZAR ANTIBIÓTICOS A PARTIR DE BACTERIAS

En los últimos años, se descubrió que las bacterias poseen un metabolismo capaz de cumplir con diversas funciones, y esta característica les permite, entre otras tareas, producir antibióticos. Por ello, un equipo científico mexicano del Laboratorio Nacional de Genómica para la Biodiversidad (Langebio) estudia distintas especies con el fin de identificar aquellas que puedan sintetizar compuestos que deriven en el desarrollo de nuevos medicamentos.
Francisco Barona Gómez, adscrito al Laboratorio de Evolución de la Diversidad Metabólica, afirma que ellos se enfocaron en el grupo de las actinobacterias, conocidas como actinomicetos con el objetivo de entender los procesos y la evolución en su metabolismo, que les permite producir un antibiótico, infectar una célula humana o degradar un contaminante.
Uno de los hallazgos del equipo científico fue con la bacteria gram positiva Streptomyces lividans que, pese a contar con más de 50 años de investigación, recientemente encontraron mayor número de genes capaces de sintetizar antibióticos, y todo fue posible gracias a la aplicación de la genómica.
Al estudiar estos genes, los expertos de Langebio observaron un proceso denominado promiscuidad enzimática, definido como la posibilidad que poseen las proteínas de las bacterias de hacer varias cosas al mismo tiempo.
El doctor Barona Gómez cuenta que antes se creía que las enzimas, proteínas encargadas de producir reacciones químicas en el metabolismo, eran muy especializadas y sólo tenían una función, pero ahora se ha descubierto que tienen la capacidad de cumplir con varias a la vez.
El doctor también resalta que es precisamente esta particularidad la que va a permitir encontrar nuevas rutas metabólicas para la síntesis de compuestos, los cuales pueden dar lugar a la producción de antibióticos o biocombustibles a partir de bacterias, entre otros.
De acuerdo con el investigador, el gran reto es encontrar enzimas que puedan degradar materia orgánica de diferentes fuentes para obtener químicos novedosos. Por ejemplo, en el terreno de los antibióticos, es necesario generar nuevas moléculas debido al problema de resistencia bacteriana, ocasionada por el abuso en su administración y a que la evolución seleccionó las cepas más fuertes.
Lo anterior, aunado a que los laboratorios farmacéuticos redujeron sus investigaciones en esa área, motivó a diversos grupos de científicos a apostar por la genómica, que está generando una revolución en la búsqueda de nuevos fármacos, por lo que esta investigación del Langebio contribuye a sentar las bases en la obtención de nuevos productos.

26 de diciembre de 2013

GENETISTAS CONSIGUEN AVANCES SIGNIFICATIVOS EN ÁLAMOS MODIFICADOS GENÉTICAMENTE

Genetistas forestales en la Universidad Estatal de Oregón (OSU) han creado álamos genéticamente modificados que crecen más rápido, tienen resistencia a las plagas de insectos y son capaces de mantener la expresión de los genes insertados durante al menos 14 años.
El avance podría ser especialmente útil en las industrias del papel y la pulpa, y en la industria emergente de los biocombustibles que podría basarse en las plantaciones de álamos híbridos.
Los investigadores afirman que el uso comercial de dichos árboles podría hacerse con álamos que también han sido modificados genéticamente para ser estériles por lo que sería improbable que sus características se propaguen a otros árboles.
El desarrollo de árboles masculinos estériles se ha demostrado en el campo. La esterilidad femenina aún no se ha realizado pero debería ser factible, dijeron. Sin embargo, no está claro si los organismos reguladores podrían permitir el uso de estos árboles, con la esterilidad como un factor clave para su mitigación.
Steven Strauss, un distinguido profesor de la biotecnología forestal en la OSU afirma que en términos del rendimiento de madera, salud y productividad de las plantaciones, estos árboles transgénicos podrían ser muy importantes, pues los experimentos de campo y la continua investigación mostraron resultados que superaron las expectativas.
Un estudio a gran escala con 402 árboles de nueve eventos de inserción rastreó el resultado de colocar el gen Cry3Aa en álamos híbridos. La primera fase se llevó a cabo en pruebas de campo entre 1998 y 2001, y en 14 años desde entonces, el estudio continuó en un "banco de clones" en la OSU para asegurar que las características valoradas fueran retenidas con la edad.
Todos los árboles fueron retirados o cortados a la edad de dos años antes de tener la edad suficiente para florecer y reproducirse, con el fin de evitar cualquier flujo de genes en poblaciones de árboles silvestres.
Con esta modificación genética, los árboles fueron capaces de producir una proteína insecticida que ayudó a protegerlos contra el ataque de insectos, pues estos pueden hacer que los árboles sean más vulnerables a otros problemas de salud. Este método ha demostrado ser eficaz como medida de control de plagas en otras especies de cultivos como el maíz y la soja, lo que resulta en una reducción sustancial en el uso de plaguicidas y una disminución de las pérdidas de cultivos.
Los álamos híbridos, que por lo general se cultivan en densas hileras en terreno llano, son especialmente vulnerables a las epidemias de insectos. La aplicación manual de plaguicidas es cara y son dirigidos a una amplia gama de insectos, en lugar de sólo a los insectos que atacan a los árboles.
Varios de los árboles transgénicos en este estudio también habían mejorado significativamente sus características de crecimiento. En comparación con los controles, los árboles transgénicos crecieron en promedio un 13% más después de dos temporadas de cultivo, y en el mejor de los casos, un 23%.
Algunos de los trabajos también usaron un clon de álamo tolerante a la sequía, otra ventaja en lo que puede ser un futuro clima más cálido y seco.
Los cultivos anuales como el algodón y el maíz ya se cultivan habitualmente como productos trangénicos con genes de resistencia a insectos. Los árboles, sin embargo, tienen que crecer y vivir por años antes de la cosecha y están sometidos a múltiples generaciones de ataques de plagas de insectos. Es por eso que la protección manipulada contra insectos puede ofrecer un mayor valor comercial, y, por lo tanto, las pruebas extendidas eran necesarias para demostrar que los genes de resistencia todavía se expresarían más de una década después de la siembra .
Según Strauss, algunos álamos híbridos genéticamente modificados ya se utilizan comercialmente en China, pero ninguno en los Estados Unidos. El uso de árboles transgénicos en los EE.UU. todavía se enfrenta a obstáculos regulatorios. Los organismos reguladores son propensos a requerir extensos estudios sobre el flujo de genes y sus efectos sobre los ecosistemas forestales, los cuales son difíciles de llevar a cabo.
Strauss aboga por la modificación de los genes de esterilidad entre los árboles como un mecanismo para controlar el flujo de genes, lo que unido a una mayor investigación ecológica podría ofrecer un camino socialmente aceptable para su despliegue comercial .

24 de noviembre de 2013

AUMENTAN LA PRODUCCIÓN DE COMPUESTOS VALIOSOS EN CIANOBACTERIAS MEDIANTE LA MANIPULACIÓN GENÉTICA DE SU RELOJ BIOLÓGICO

Engañar el reloj biológico de las algas a permanecer en su franja temporal diurna puede aumentar dramáticamente la cantidad de compuestos valiosos que estas plantas marinas pueden producir cuando se cultivan bajo luz constante.
Esa es la conclusión de un experimento que encontró que cuando se detenían los relojes biológicos de las cianobacterias en su franja temporal diurna, la cantidad producida de varias biomoléculas aumentó hasta en un 700 por ciento en cultivo bajo luz constante.
Carl Johnson, profesor de Ciencias Biológicas en la Universidad de Vanderbilt ,afirma que mediante la manipulación de los genes del reloj biológico de cianobacterias se puede aumentar la producción de biomoléculas de gran valor comercial. En los últimos 10 años, él y sus colaboradores han descubierto la manera de detener los relojes circadianos en la mayoría de las especies de algas y en muchas plantas superiores, por lo que la técnica debe ser de aplicación general.
Parar el reloj biológico podría tener importantes beneficios económicos: Las microalgas se utilizan para una amplia variedad de aplicaciones comerciales que van desde medicamentos contra el cáncer a los cosméticos, bioplásticos, biocombustibles y nutracéuticos. Además, las empresas de biotecnología están actualmente irrumpiendo en establecer biofábricas que utilizan microorganismos para crear una amplia variedad de sustancias que son demasiado difíciles o costosas de sintetizar utilizando métodos químicos convencionales. Muchos de ellos se basan en los microorganismos con relojes biológicos.
En 2004, Johnson fue miembro del equipo que determinó la estructura molecular de una proteína del reloj circadiano por primera vez. El trabajo subsecuente determinó el mecanismo entero del reloj biológico en las cianobacterias, el más simple en la naturaleza. Los investigadores descubrieron que el reloj se componía de tres proteínas: KaiA, KaiB y KaiC. El conocimiento detallado de la estructura del reloj biológico les permitió determinar cómo encender y apagar el reloj. 
En este ultimo estudio, los investigadores descubrieron que dos componentes del reloj, KaiA y KaiC, actúan como interruptores que encienden y apagan los genes diurnos y nocturnos de la célula. Han llamado a esta regulación como "yin-yang ". Cuando KaiA se produce en grandes cantidades y KaiC en cantidades más pequeñas, el 95% de los genes de la célula que son activos durante el día están encendidos , y el 5% de los genes de la célula que funcionan durante la noche están desactivados. Sin embargo, cuando KaiC es aumentada y KaiA disminuida, entonces los genes diurnos se apagan y los genes nocturnos se encienden.

Como resultado de ello, el profesor Johnson piensa que todo lo que se tiene que hacer para bloquear el reloj biológico en su franja temporal diurna es regular genéticamente la expresión del gen KaiA, que es una simple manipulación genética en las cianobacterias.
Para ver qué efectos tiene esta capacidad en la habilidad de las bacterias para producir compuestos comercialmente importantes, los investigadores insertaron un gen de la insulina humana en algunas de las células de cianobacterias, un gen para una proteína fluorescente (luciferasa) en otras células y un gen para la hidrogenasa, una enzima que produce gas de hidrógeno, en otras. Ellos encontraron que las células con los relojes bloqueados producian 200% más de hidrogenasa, 500% más insulina y 700% más de luciferasa cuando se las cultivó bajo luz constante que cuando los genes se insertaron en las células con los relojes biologicos que funcionaban normalmente.

5 de noviembre de 2013

DISEÑAN LEVADURA CON UN AUMENTO EN SU PRODUCCIÓN DE BIOCOMBUSTIBLE MEDIANTE LA INSERCIÓN DE UN CONJUNTO DE GENES BACTERIANOS

Científicos informaron que han diseñado levaduras para consumir ácido acético, un subproducto no deseado del proceso de conversión de hojas, tallos y otros tejidos de las plantas, en biocombustibles. La innovación aumenta el rendimiento de etanol a partir de fuentes lignocelulósicas en aproximadamente un 10 por ciento.
La lignocelulosa es el material fibroso que compone los tejidos estructurales de las plantas. Es una de las más abundantes materias primas en el planeta y, ya que es rico en carbono es una fuente atractiva de biomasa renovable para la producción de biocombustibles.
La levadura Saccharomyces cerevisiae es buena en la fermentación de azúcares simples (tales como aquellas encontradas en los granos de maíz y caña de azúcar) para producir etanol. Pero persuadir a la levadura para que se den un festín de tallos y hojas de las plantas no es tan fácil. Hacerlo a escala industrial requiere una serie de medidas costosas, uno de los cuales consiste en separar la hemicelulosa, un componente clave de la lignocelulosa.
El profesor Yong-Su Jin de la Universidad de Illinois, quien dirigió la investigación, junto con Jamie Cate de la Universitdad de California en Berkeley, afirman que si se descompone la hemicelulosa, se obtiene xilosa y ácido acético. Entonces es posible diseñar levaduras para fermentar la xilosa. Sin embargo , el ácido acético es un compuesto tóxico que mata a la levadura. Esto es uno de los mayores problemas en la producción de etanol celulósico.
En un estudio anterior, se diseñó una S. cerevisiae para consumir de manera más eficiente la xilosa. Esto mejoró la producción de etanol, pero el proceso generó un exceso de NADH, una molécula de transferencia de electrones que es parte de la circulación energética de todas las células. La acumulación de ácido acético también mató a gran parte de la levadura.
Después de discutir el problema con Jin, Cate tuvo una idea, tal vez el equipo podría inducir a la levadura a consumir el ácido acético. Ese proceso también podría utilizar el excedente de NADH a partir del metabolismo de la xilosa.
Mediante la revisión de estudios anteriores, la investigadora postdoctoral Na Wei descubrió que otro organismo, una bacteria, podría consumir ácido acético. Ella identificó las enzimas que catalizaban este proceso y vio que uno de ellos no sólo convierte el ácido acético en etanol, sino también utilizaría el excedente de NADH a partir del metabolismo de la xilosa.
Sin embargo, el equipo no estaba preparado para empezar a poner los genes en la levadura. Primero tuvieron que determinar si sus esfuerzos eran propensos a tener éxito. Uno de los problemas que identifica Cate con la levadura, es que ha evolucionado para hacer una cosa muy bien y cuando se inicia la adición de estos nuevos genes en lo que ya está establecido, no es obvio que va a trabajar en adelante.
Para tener una mejor idea de la viabilidad de la idea, el estudiante graduado Josh Quaterman utilizó simulaciones por ordenador para ver cómo la adición de los nuevos genes al repertorio metabólico de la levadura afectaría la producción de etanol. Sus cálculos indican que la vía que Wei había identificado impulsaría la producción de etanol.
A continuación, Wei hizo el laborioso trabajo de la inserción de los genes deseables en la levadura, un proceso que tomó varios meses. Cuando se probó la levadura, vio que produce un 10% más etanol que antes, de acuerdo con cálculos de Quaterman. En otros experimentos , ella demostró que la nueva levadura estaba, de hecho, haciendo algo del etanol a partir del acetato.
El profesor Jin considera que el avance ayudará a aquellos quienes se centran en otras etapas del proceso de producción de biocombustibles. Además, los genetistas y los que participan en el pretratamiento puede dejar de preocuparse por encontrar formas de eliminar el ácido acético a partir de lignocelulosa.

19 de octubre de 2013

BACTERIAS GENÉTICAMENTE MODIFICADAS, POTENCIALES HERRAMIENTAS PARA LA PRODUCCIÓN DE AZÚCARES RAROS

La producción de azúcares raros ha sido muy costosa hasta ahora. Un estudio reciente de doctorado indica que su producción puede hacerse significativamente más eficiente con la ayuda de bacterias modificadas genéticamente. Esto reduce los precios y permite su uso más versátil en la medicina, por ejemplo.
La industria ya está haciendo uso de azúcares raros como edulcorantes bajos en calorías y como precursores de medicamentos anticancerígenos y antivirales. Sin embargo, su elevado coste ha impedido su investigación y  su uso: no es posible aislar cantidades significativas de azúcares raros directamente de la naturaleza, y por lo tanto su producción ha sido cara.
La eficiencia de la producción de azúcar se puede aumentar a través de la ingeniería genética. En su reciente tesis doctoral, Anne Usvalampi, estudió la producción microbiana de  tres azúcares raros: xilitol , L-xilulosa y L-xilosa con la ayuda de bacterias modificadas genéticamente.
Usvalampi afirma que han añadido algunos genes a las bacterias, por lo que producen las enzimas requeridas, y con su ayuda, los azúcares raros deseados. Los resultados fueron prometedores. La producción de xilitol fue considerablemente más eficiente que lo que previamente se ha logrado mediante el uso de bacterias, y la L-xilosa se ​​fabricó por primera vez sin grandes cantidades de subproductos. En comparación con la síntesis química, las bacterias demostraron ser significativamente mejores en la producción de L-xilulosa y L-xilosa.
Usvalampi y su grupo usaron como precursor la D-xilosa, que es una parte de la hemicelulosa que se puede extraer a partir de maderas duras. Este azúcar fue utilizado para la fabricación de xilitol con la ayuda de Lactococcus lactis, a la que el gen de la xilosa reductasa de la Pichia stipitis se le fue empalmado. A continuación, el xilitol se utiliza para producir L-xilulosa con Escherichia coli, a la que se le añadió el xilitol-4-deshidrogenasa de Pantoea ananatis. Por último, se utilizó L-xilulosa para producir L-xilosa con la ayuda de E. coli, en la que el gen L-fucosa isomerasa de la bacteria había sido sobreexpresado​​.
El xilitol es conocido por su efecto preventivo contra la caries, pero nuevos estudios indican que también es útil en la prevención de infecciones del oído en los niños. Anne Usvalampi cree que muchos nuevos usos se pueden encontrar para los azúcares raros, especialmente en la industria farmacéutica , una vez que sus precios puedan reducirse gracias a nuevos y más eficientes métodos de producción. Ya en la actualidad existe evidencia de que el azúcar rara manosa puede ser utilizado en el tratamiento de diversas infecciones y heridas.