"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta ADHESIVOS NATURALES. Mostrar todas las entradas
Mostrando entradas con la etiqueta ADHESIVOS NATURALES. Mostrar todas las entradas

26 de septiembre de 2014

LOGRAN PRODUCIR EN BACTERIAS UN MATERIAL ADHESIVO MUY FUERTE INCLUSO BAJO EL AGUA A PARTIR DE UNA MEZCLA COMPLEJA DE PROTEÍNAS BACTERIANAS Y PROTEÍNAS DEL BISO DEL MEJILLÓN

Los mariscos tales como mejillones y percebes secretan proteínas muy pegajosas que les ayudan a adherirse a las rocas o los cascos de los barcos incluso bajo el agua. Inspirado por estos adhesivos naturales, un equipo de ingenieros del MIT ha diseñado nuevos materiales adhesivos que podrían ser usados para reparar barcos o ayudar a curar heridas e incisiones quirúrgicas. 
Para crear sus nuevos adhesivos resistentes al agua, los investigadores del MIT diseñaron bacterias que produzcan un material híbrido que incorpora las proteínas pegajosas del mejillón, así como una proteína bacteriana que se encuentra en las biopelículas (capas viscosas formadas por las bacterias que crecen en una superficie). Cuando se combinan, estas proteínas forman adhesivos incluso más fuertes bajo el agua que las secretadas por los mejillones. 
Este proyecto representa un nuevo tipo de enfoque que puede ser explotado para sintetizar materiales biológicos con múltiples componentes, utilizando bacterias como pequeñas fábricas.
El profesor asociado de ingeniería biológica, ingeniería eléctrica y ciencias de la computación,Timothy Lu, comenta que el objetivo final es elaborar una plataforma en donde se pueda empezar a construir materiales que combinen múltiples dominios funcionales y ver si mejoran el rendimiento de los materiales adhesivos.
La sustancia pegajosa que ayuda a los mejillones a que se adhieren a las superficies submarinas está hecho de varias proteínas conocidas como proteínas del biso del mejillón. Los científicos han modificado previamente la bacteria E. coli para producir proteínas individuales del biso, pero estos materiales no captan la complejidad de los adhesivos naturales. En un nuevo estudio, el equipo del MIT quería diseñar bacterias para producir dos diferentes proteínas del biso, combinadas con proteínas bacterianas llamadas fibras curli (proteínas fibrosas que pueden agruparse y ensamblarse así mismas en mallas mucho más grandes y complejas).
El equipo diseñó bacterias de modo que pudieran producir proteínas que consistieran en fibras curli unidas a la proteína 3 o a la proteína 5 del biso. Después de purificar estas proteínas de las bacterias, los investigadores las dejaron incubar y formar densas mallas fibrosas. El material resultante tiene una estructura regular y flexible que se une fuertemente a las dos superficies secas y mojadas.
Los investigadores probaron los adhesivos usando microscopía de fuerza atómica (una técnica que explora la superficie de una muestra con una pequeña punta). Ellos encontraron que los adhesivos se unían fuertemente a las puntas hechas de tres materiales diferentes: sílice, oro y poliestireno. Los adhesivos ensamblados a partir de cantidades iguales de proteína 3 y proteína 5 forman adhesivos más fuertes que las que tienen una relación diferente, o sólo una de las dos proteínas.
Los investigadores dicen que estos adhesivos también son más fuertes que los adhesivos naturales del mejillón, y son los más fuertes de inspiración biológica hasta la fecha.
Usando esta técnica, los investigadores pudieron producir sólo pequeñas cantidades de adhesivo, por lo que ahora están tratando de mejorar el proceso y generar grandes cantidades del mismo. También planean experimentar con la adición de algunas de las otras proteínas del biso del mejillón para aumentar la fuerza de adhesión aún más y mejorar la robustez del material.
Ademas, el equipo tiene planeado tratar de crear "pegamentos vivientes" que consisten en películas de bacterias que podían sentir el daño a una superficie y luego repararlo mediante la secreción de un adhesivo.