"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."
Mostrando entradas con la etiqueta BACTERIAS. Mostrar todas las entradas
Mostrando entradas con la etiqueta BACTERIAS. Mostrar todas las entradas

7 de febrero de 2014

DESCUBREN UNA BACTERIA QUE RESPIRA TOXINAS CON POTENCIAL APLICABILIDAD EN LA INDUSTRIA Y EN EL CUIDADO DEL MEDIO AMBIENTE

Enterradas profundamente en el lodo a lo largo de las orillas de un lago de agua salada cerca del Parque Nacional de Yosemite se encuentran colonias de bacterias con una propiedad inusual: respiran un metal tóxico para sobrevivir. Investigadores de la Universidad de Georgia descubrieron la bacteria en una reciente expedición al Lago Mono, en California, y sus experimentos con este organismo inusual demuestran que un día pueda convertirse en una herramienta útil para la industria y la protección del medio ambiente.
Las bacterias utilizan elementos que son notoriamente tóxicos para los humanos, tales como el antimonio y el arsénico, en lugar de oxígeno, una habilidad que les permite sobrevivir enterrados en el lodo de aguas termales en esta única cuenca salina.
Chris Abin, autor de un artículo que describe la investigación afirma que esta bacteria está particularmente encariñada con el arsénico, pero también utiliza otros elementos relacionados, ademá puede ser posible aprovechar estas habilidades naturales para hacer productos útiles a partir de diferentes elementos.
El antimonio es un metal ampliamente utilizado por numerosas industrias para fabricar plásticos, caucho vulcanizado, retardantes de llama y una serie de componentes electrónicos, incluyendo las celdas solares y LEDs. Para hacer estos productos, el antimonio debe ser convertido en trióxido de antimonio, y esta bacteria es capaz de producir dos tipos muy puros de  trióxido de antimonio cristalino perfectamente adecuado para la industria.
Los métodos químicos tradicionales utilizados para convertir mineral de antimonio en trióxido de antimonio pueden ser costosos, consume mucho tiempo y a menudo crean subproductos nocivos. Pero las bacterias descubiertas por los investigadores de UGA hacen trióxido de antimonio naturalmente como consecuencia de la respiración, creando un producto industrial útil sin crear subproductos nocivos o que requieren legiones de equipos especializados.
James Hollibaugh, principal investigador del proyecto indica que los cristales de trióxido de antimonio producidos por esta bacteria son muy superiores a aquellos actualmente producidos usando métodos químicos, pues ellos probaron sus cristales junto a los productos disponibles en el mercado, y los suyos son de calidad idéntica o superior.
Los investigadores creen que las industrias podrían mantener grandes cultivos de sus bacterias en simples tanques de almacenamiento, alimentarlo con antimonio oxidado y recoger los cristales de trióxido de antimonio. Después de recoger los cristales, los fabricantes sólo necesitarían alimentar más antimonio oxidado en los tanques para mantener el proceso predominantemente autosustentable en marcha.
Pero la utilidad de las bacterias no se limita a la refinación de antimonio. Posee un número de diferentes enzimas que les permiten utilizar otros elementos peligrosos que se acumulan en las aguas residuales cerca de minas o refinerías y constituyen una seria amenaza para los seres humanos y los animales. Por ejemplo, las bacterias son capaces de reducir otros contaminantes, incluyendo el selenio y el telurio. Las pruebas preliminares sugieren que las bacterias podrían utilizarse para eliminar estos contaminantes de las aguas residuales y proteger los ecosistemas circundantes. 
Según Hollibaugh, estas bacterias pueden ser utilizadas en una de dos maneras. Las bacterias podrían utilizarse simplemente para limpiar el agua, pero también podrían ayudar a los seres humanos a recuperar y reciclar los elementos valiosos del agua.De esta manera, el agua se mantiene limpia y la industria no pierde un recurso valioso.
Tanto Abin como Hollibaugh advierten que más investigación debe hacerse antes de que cualquiera de estas aplicaciones estén listas para implementarse. La UGA ha solicitado patentes para proteger estos procesos únicos, así como para la propia bacteria, y actualmente están probando la eficacia de las bacterias en diferentes ambientes y condiciones para descubrir cómo las bacterias reaccionan cuando son expuestos a una variedad de metales en forma simultánea. 
Gennaro Gama, gerente senior de licencias de tecnología en la UGA cree que esta tecnología representa una solución viable para muchos tipos de contaminación ambiental, pero también es útil para la producción de materias primas importantes, como el trióxido de antimonio, selenio y teluro elemental.

6 de febrero de 2014

MEDIANTE LA APLICACIÓN DE LA GENÓMICA SE BUSCA NUEVOS GENES CAPACES DE SINTETIZAR ANTIBIÓTICOS A PARTIR DE BACTERIAS

En los últimos años, se descubrió que las bacterias poseen un metabolismo capaz de cumplir con diversas funciones, y esta característica les permite, entre otras tareas, producir antibióticos. Por ello, un equipo científico mexicano del Laboratorio Nacional de Genómica para la Biodiversidad (Langebio) estudia distintas especies con el fin de identificar aquellas que puedan sintetizar compuestos que deriven en el desarrollo de nuevos medicamentos.
Francisco Barona Gómez, adscrito al Laboratorio de Evolución de la Diversidad Metabólica, afirma que ellos se enfocaron en el grupo de las actinobacterias, conocidas como actinomicetos con el objetivo de entender los procesos y la evolución en su metabolismo, que les permite producir un antibiótico, infectar una célula humana o degradar un contaminante.
Uno de los hallazgos del equipo científico fue con la bacteria gram positiva Streptomyces lividans que, pese a contar con más de 50 años de investigación, recientemente encontraron mayor número de genes capaces de sintetizar antibióticos, y todo fue posible gracias a la aplicación de la genómica.
Al estudiar estos genes, los expertos de Langebio observaron un proceso denominado promiscuidad enzimática, definido como la posibilidad que poseen las proteínas de las bacterias de hacer varias cosas al mismo tiempo.
El doctor Barona Gómez cuenta que antes se creía que las enzimas, proteínas encargadas de producir reacciones químicas en el metabolismo, eran muy especializadas y sólo tenían una función, pero ahora se ha descubierto que tienen la capacidad de cumplir con varias a la vez.
El doctor también resalta que es precisamente esta particularidad la que va a permitir encontrar nuevas rutas metabólicas para la síntesis de compuestos, los cuales pueden dar lugar a la producción de antibióticos o biocombustibles a partir de bacterias, entre otros.
De acuerdo con el investigador, el gran reto es encontrar enzimas que puedan degradar materia orgánica de diferentes fuentes para obtener químicos novedosos. Por ejemplo, en el terreno de los antibióticos, es necesario generar nuevas moléculas debido al problema de resistencia bacteriana, ocasionada por el abuso en su administración y a que la evolución seleccionó las cepas más fuertes.
Lo anterior, aunado a que los laboratorios farmacéuticos redujeron sus investigaciones en esa área, motivó a diversos grupos de científicos a apostar por la genómica, que está generando una revolución en la búsqueda de nuevos fármacos, por lo que esta investigación del Langebio contribuye a sentar las bases en la obtención de nuevos productos.

18 de noviembre de 2013

MEDIANTE EL COCULTIVO DE BACTERIAS DE DOS TIPOS DISTINTOS Y COMPLEMENTARIOS, CIENTÍFICOS LOGRAN GENERAN ELECTRICIDAD

Las células bacterianas usan una impresionante gama de estrategias para crecer, desarrollarse y mantenerse. A pesar de su pequeño tamaño, estas máquinas especializadas interactúan unas con otras en formas intrincadas.
En una nueva investigación llevada a cabo en el Instituto de Biodiseño de la Universidad Estatal de Arizona, Jonathan Badalamenti, César Torres y Rosa Krajmalnik-Brown exploran las relaciones de dos formas bacterianas importantes, lo que demuestra su capacidad para producir electricidad mediante la coordinación de sus actividades metabólicas. El grupo demuestra que la bacteria del azufre Chlorobium sensible a la luz verde puede actuar en conjunto con la Geobacter, bacteria generadora de electricidad. El resultado es una forma de generación de electricidad con respuesta a la luz.
Badalamenti , autor principal del proyecto, afirma que la Geobacter no es sensible por sí mismo a la luz, porque no es un organismo fotosintético. Por el contrario, la Chlorobium  si es fotosintética e incapaz de llevar a cabo la forma de respiración necesaria para la producción de electricidad. Pero al poner estos dos organismos juntos, se obtiene tanto una respuesta a la luz y la capacidad para generar corriente.
Los electrones que la Geobacter adquiere de su compañera fotosintética Chlorobium se pueden medir y se recogen en forma de electricidad, usando un dispositivo conocido como celda de combustible microbiana (MFC por sus siglas en ingles), una especie de batería biológica.
Las celdas de combustible microbianas pueden algún día llegar a generar electricidad limpia de diversas corrientes de residuos orgánicos, simplemente mediante la explotación de las capacidades de transferencia de electrones de diversos microorganismos.
En este estudio, los investigadores exploran la posibilidad de aumentar la producción de electricidad en MFC mediante el examen de la función de respuesta a la luz de la Chlorobium. La configuración experimental resultante, en el que las bacterias sensibles a la luz juega un papel en la generación de energía, se conoce como celda fotoelectroquímica microbiana (MPC por sus siglas en ingles).
Los resultados experimentales del estudio sugieren el siguiente escenario: las bacterias Chlorobium recogen la energía de la luz con el fin de fijar el dióxido de carbono e impulsar su metabolismo. Durante las fases oscuras; sin embargo, las bacterias se sostienen cambiando la fotosíntesis por una fermentación oscura, utilizando la energía que han almacenado. Acetato se produce como un subproducto metabólico de esta fermentación en fase oscura.
Durante los períodos de oscuridad, la bacteria Geobacter gana electrones desde el acetato producido a través del metabolismo de la Chlorobium, transfiriéndolos al ánodo del MPC, produciendo de este modo corriente eléctrica. Cuando las dos comunidades bacterianas se ven obligadas a interactuar, quedaba claro que la Chlorobium estaba ayudando a alimentar a la Geobacter, de una manera sensible a la luz.
Los autores señalan que una de las ventajas atractivas de su estudio es que en vez de tener que medir los metabolitos o crecimiento celular ya sea microscopicamente o por medio de intermediarios químicos, el construir un sistema de cocultivo en el que una de las lecturas es la electricidad permite controlar el metabolismo en el sistema en tiempo real.
Otras cuestiones se referían a si la presencia de la Chlorobium puede proporcionar beneficios para la Geobacter en cultivos que ocurren naturalmente, no confinados en un MFC. En experimentos libres de ánodos el grupo demostró que la supervivencia misma de la Geobacter a falta de otras fuentes de electrones dependía de la presencia del acetato derivado de la Chlorobium.
Además de establecer un mecanismo para la generación de energía eléctrica sensible a la luz en un MFC o MPC, las investigaciones apuntan al potencial de estudios similares para esclarecer una serie de interacciones microbianas productoras de energía.

19 de octubre de 2013

BACTERIAS GENÉTICAMENTE MODIFICADAS, POTENCIALES HERRAMIENTAS PARA LA PRODUCCIÓN DE AZÚCARES RAROS

La producción de azúcares raros ha sido muy costosa hasta ahora. Un estudio reciente de doctorado indica que su producción puede hacerse significativamente más eficiente con la ayuda de bacterias modificadas genéticamente. Esto reduce los precios y permite su uso más versátil en la medicina, por ejemplo.
La industria ya está haciendo uso de azúcares raros como edulcorantes bajos en calorías y como precursores de medicamentos anticancerígenos y antivirales. Sin embargo, su elevado coste ha impedido su investigación y  su uso: no es posible aislar cantidades significativas de azúcares raros directamente de la naturaleza, y por lo tanto su producción ha sido cara.
La eficiencia de la producción de azúcar se puede aumentar a través de la ingeniería genética. En su reciente tesis doctoral, Anne Usvalampi, estudió la producción microbiana de  tres azúcares raros: xilitol , L-xilulosa y L-xilosa con la ayuda de bacterias modificadas genéticamente.
Usvalampi afirma que han añadido algunos genes a las bacterias, por lo que producen las enzimas requeridas, y con su ayuda, los azúcares raros deseados. Los resultados fueron prometedores. La producción de xilitol fue considerablemente más eficiente que lo que previamente se ha logrado mediante el uso de bacterias, y la L-xilosa se ​​fabricó por primera vez sin grandes cantidades de subproductos. En comparación con la síntesis química, las bacterias demostraron ser significativamente mejores en la producción de L-xilulosa y L-xilosa.
Usvalampi y su grupo usaron como precursor la D-xilosa, que es una parte de la hemicelulosa que se puede extraer a partir de maderas duras. Este azúcar fue utilizado para la fabricación de xilitol con la ayuda de Lactococcus lactis, a la que el gen de la xilosa reductasa de la Pichia stipitis se le fue empalmado. A continuación, el xilitol se utiliza para producir L-xilulosa con Escherichia coli, a la que se le añadió el xilitol-4-deshidrogenasa de Pantoea ananatis. Por último, se utilizó L-xilulosa para producir L-xilosa con la ayuda de E. coli, en la que el gen L-fucosa isomerasa de la bacteria había sido sobreexpresado​​.
El xilitol es conocido por su efecto preventivo contra la caries, pero nuevos estudios indican que también es útil en la prevención de infecciones del oído en los niños. Anne Usvalampi cree que muchos nuevos usos se pueden encontrar para los azúcares raros, especialmente en la industria farmacéutica , una vez que sus precios puedan reducirse gracias a nuevos y más eficientes métodos de producción. Ya en la actualidad existe evidencia de que el azúcar rara manosa puede ser utilizado en el tratamiento de diversas infecciones y heridas.

11 de octubre de 2013

CREAN BACTERIAS CON PROTEINAS A MANERA DE JERINGUILLAS MICROSCÓPICAS PARA LA INSERCIÓN DE PROTEÍNAS TERAPÉUTICAS A CÉLULAS HUMANAS

Científicos del Centro Nacional de Biotecnología (CNB) del CSIC de España han obtenido una patente en los Estados Unidos que les permite utilizar bacterias no patógenas. Las bacterias (E.coli) modificadas tienen en su membrana unas proteínas a modo de jeringuilla con las que son capaces de inyectar anticuerpos de pequeño tamaño (nanoanticuerpos) y otras proteínas con potencial terapéutico (p.ej. enzimas) a células humanas, evitando de esta manera la barrera que representa la membrana plasmática de la célula. 
En el caso de usar nanoanticuerpos, estos se podrían unir dentro de la célula a una proteína diana que participase en un proceso patológico para inactivar su función. 
Para comprobar la viabilidad de esta tecnología, el grupo dirigido en el CNB por el doctor Luis Ángel Fernández introdujo estos nanoanticuerpos en el citoplasma de células humanas demostrando que se unían especificamente a su proteína diana.
Una de las principales ventajas de este sistema es que la producción de los nanoanticuerpos la realiza la propia bacteria de manera continua, lo que podría reducir el coste y el número de dosis necesario para administrar estos anticuerpos de forma efectiva. 
Fernández recalca además su seguridad, ya que la inyección de los anticuerpos por parte de E. coli no conlleva ni la invasión de la células por parte de las bacterias ni la transferencia de manterial genético, al contrario que lo que ocurre con virus modificados. 
El objetivo actual de este grupo de investigación es combinar estas jeringas moleculares en bacterias "probióticas" con nuevas modificaciones de forma que actuasen en el intestino y otras mucosas del organismo como auténticos "microrrobots" dirigidos tanto para la detección como el tratamiento in situ de lesiones de tipo inflamatorio o tumoral.

5 de octubre de 2013

DISEÑAN NUEVA VÍA METABÓLICA PARA CONVERTIR MAS EFICIENTEMENTE LOS AZÚCARES EN BIOCOMBUSTIBLES


Investigadores de la UCLA, en Estados Unidos, han creado una nueva vía metabólica sintética para descomponer la glucosa que podría conducir a un aumento del 50% en la producción de biocombustibles.
La nueva vía está destinada a sustituir la vía metabólica natural conocida como glucólisis, una serie de reacciones químicas que casi todos los organismos utilizan para convertir los azúcares en los precursores moleculares que las células necesitan. La glucólisis convierte cuatro de los seis átomos de carbono que se encuentran en la glucosa en moléculas de dos átomos de carbono conocidas como acetil-CoA, un precursor para los biocombustibles como el etanol y butanol, así como de los ácidos grasos, aminoácidos y productos farmacéuticos. Sin embargo, los dos carbonos de glucosa restantes se pierden como dióxido de carbono.
La glucólisis se utiliza actualmente en biorefinerias para convertir los azúcares derivados de la biomasa vegetal en biocombustibles, pero la pérdida de dos átomos de carbono por cada seis se considera como una obstáculo importante en la eficiencia del proceso. La vía glucolítica sintética del equipo de investigación de la UCLA convierte los seis átomos de carbono de la glucosa en tres moléculas de acetil-CoA sin que se pierdan en dióxido de carbono.
El investigador principal es James Liao, quien afirma que esta vía sintética resolvió una de las limitaciones más importantes en la producción de biocombustibles y biorrefinería: la pérdida de un tercio del carbono.
Esta ruta sintética utiliza enzimas que se encuentran en varias vías distintas en la naturaleza.
El equipo la probó por primera vez y confirmó que la nueva vía trabajaba in vitro. Luego, manipularon genéticamente a bacterias E.coli para utilizar la nueva vía metabólica y demostraron la conservación completa de los carbonos. Las moléculas de acetil-CoA resultantes se pueden utilizar para producir un compuesto químico deseado con una mayor eficiencia de carbono. Los investigadores llamaron a su nueva vía híbrida como "glucólisis no oxidativa" o NOG .
Los investigadores también observaron que esta nueva vía de síntesis podría ser utilizada con muchos otros tipos de azúcares, que en cada caso tienen diferentes números de átomos de carbono por molécula, y ningún carbono se desperdiciaría.
Igor Bogorad, uno estudiante graduado del laboratorio de Liao, afirma que para biorefinación, una mejora del 50% en el rendimiento sería un enorme aumento y el NOG puede ser una buena plataforma con diferentes azúcares para una conversión del 100% a acetil-CoA. Además prevee que NOG tendrá aplicaciones de amplio alcance y abrirá nuevas posibilidades debido a la manera en que podemos conservar el carbono.
Los investigadores también sugieren que esta nueva vía podría ser utilizada en la producción de biocombustibles utilizando microorganismos fotosintéticos.

30 de septiembre de 2013

NUEVA TÉCNICA PARA LA PRODUCCIÓN DE GASOLINA MICROBIANA MEDIANTE INGENIERÍA METABÓLICA

Durante muchas décadas, los seres humanos han confiado en los recursos fósiles para producir combustibles líquidos como la gasolina, diesel, y muchos productos químicos industriales y de consumo para el uso diario. Sin embargo, el aumento de las tensiones en los recursos naturales, así también los problemas ambientales como el calentamiento global han provocado un gran interés en el desarrollo de formas sostenibles de obtener combustibles y productos químicos.
En anteriores trabajos de investigación,  a través de ingeniería metabólica (rama de la ingeniería genética) de Escherichia coli, se han producido algunos resultados en la producción de alcanos de cadena larga, que constan de 13 a 17 átomos de carbono, adecuados para reemplazar el diesel. Sin embargo , no ha habido ningún informe sobre la producción microbiana de alcanos de cadena corta, un posible sustituto de la gasolina.
Ahora, un equipo de investigación dirigido por el profesor coreano Sang Yup Lee del Departamento de Ingeniería Química y Biomolecular en el Instituto Superior Coreano de Ciencia y Tecnología ( KAIST ) informó, por primera vez, el desarrollo de una nueva estrategia para la producción de gasolina microbiana a través de ingeniería metabólica sobre cepas de E. coli.
El equipo de investigación modificó el metabolismo de ácidos grasos para proporcionar los derivados de ácidos grasos que son más cortos que los metabolitos de ácidos grasos intracelulares normales, y se introdujo una nueva ruta sintética para la biosíntesis de alcanos de cadena corta. Esto permitió el desarrollo de una cepa de E. coli capaz de producir gasolina por primera vez.
En el trabajo publicado en Nature, los investigadores coreanos describen estrategias detalladas para la detección de las enzimas asociadas con la producción de ácidos grasos, el diseño de enzimas y rutas biosintéticas de ácidos grasos para concentrar el flujo de carbono hacia la producción de ácidos grasos de cadena corta, y la conversión de los ácidos grasos de cadena corta a sus correspondientes alcanos (gasolina) mediante la introducción de una nueva vía sintética y la optimización de las condiciones de cultivo. Por otra parte , el equipo de investigación mostró la posibilidad de producir ésteres grasos y alcoholes mediante la introducción de las enzimas responsables en la misma cepa.
El profesor Sang Yup Lee afirmó ademas que es sólo el comienzo de los trabajos para la producción sostenible de la gasolina. El título es bastante bajo debido al bajo flujo metabólico hacia la formación de ácidos grasos de cadena corta y sus derivados. Actualmente están trabajando en aumentar el título, el rendimiento y la productividad de biogasolina. 

20 de septiembre de 2013

LOGRAN GENERAR ELECTRICIDAD CON MICROORGANISMOS PRESENTES EN AGUAS RESIDUALES

Ingenieros de la Universidad de Stanford han desarrollado una nueva forma de generar electricidad a partir de aguas residuales utilizando microbios cableados que actúan como minicentrales naturales mientras digieren los desechos animales y vegetales.
En un artículo publicado en «Proceedings of the National Academy of Sciences», sus autores, Yi Cui, investigador de materiales, Criddle Craig, ingeniero ambiental, y Xing Xie, científico interdisciplinario, explican la invención de esta batería microbiana.
Su objetivo es que el invento pueda ser aplicado en lugares como plantas de tratamiento de aguas residuales, o donde se descomponen los contaminantes orgánicos, en zonas muertas de lagos y costas, donde la escorrentía de fertilizantes y otros residuos puede reducir los niveles de oxígeno y afectar a la vida marina.
Por el momento, el prototipo diseñado no supera el tamaño de una pila y presenta dos electrodos, uno positivo y otro negativo, además de una botella con agua residual. Con ese caldo, unidas al electrodo negativo, un tipo inusual de bacterias forman un festín con los desechos orgánicos y producen una electricidad que es captada con el electrodo positivo de la batería. «Lo llamamos la pesca de electrones», explicó Craig.
Durante años, los científicos han sabido de la existencia de los denominados microbios exoelectrogénicos: organismos que han evolucionado en ambientes sin ventilación y desarrollado la capacidad de reaccionar con los minerales de óxido en lugar de respirar oxígeno. Así, durante los últimos doce años, diversos grupos de investigación han intentado utilizar estos microbios como biogeneradores que crearan energía de forma eficiente.
En el electrodo negativo, las colonias de microbios se aferran a los filamentos de carbono, que sirven como conductores eléctricosCraig aclaró que han podido observar que estos microorganismos hacen nanocables para librarse del exceso de electrones. Esos electrones fluyen hacia el electrodo positivo, fabricado con óxido de plata, que los atrae.
Los investigadores estiman que la batería microbiana puede llegar a extraer el 30 por ciento de la energía encerrada en las aguas residuales, lo que sería parecido a la eficacia de las mejores células para convertir la energía solar en electricidad.
De cara al futuro, uno de los retos, según los investigadores, será encontrar un material barato pero eficaz para el nodo positivo. El uso del óxido de plata es demasiado caro para su uso a gran escala, ahora estan buscando un material más práctico, aunque les llevará algo de tiempo.

6 de septiembre de 2013

DESARROLLAN ARROZ TRANSGÉNICO EFICAZ CONTRA EL ROTAVIRUS

Un equipo de investigadores liderado por Yoshikazy Yuki, de la Universidad de Tokio, ha desarrollado una forma de arroz transgénico que contiene un anticuerpo contra el rotavirus, un patógeno que, según la Organización Mundial de la Salud (OMS) causa más de 500.000 muertes de niños al año por la diarrea que inducen.
El trabajo ha consistido en incorporar al arroz, mediante la bacteria Agrobacterium tumefaciens, un gen que expresa el dominio variable de un anticuerpo específico contra rotavirus que se encuentra en las llamas; además de la tecnología del RNAi para suprimir la producción de las principales proteínas de almacenamiento endógenos de arroz. 
En los experimentos, los ratones que comieron del arroz, tanto los normales como los que tenían un sistema inmunitario deficiente, quedaron protegidos contra los rotavirus o en todo caso, se vio disminuida la carga viral.
Se ha visto que las semillas de arroz así conseguidas mantienen esta propiedad durante un año después de ser almacenado y que aguantan una cocción de media hora a 94°C. 
El objetivo del trabajo es claro: ayudar a prevenir y tratar la enfermedad, complementándose con las vacunas que, recientemente, se han desarrollado contra el rotavirus, y que la OMS aconseja que se incorporen a la cartera sanitaria básica de los países afectados.
Si estas vacunas funcionaran al 100% el nuevo arroz no haría falta, pero por razones que aún no están claras –aunque se apunta a una debilidad del sistema inmune debido a la desnutrición- los preparados funcionan peor en países pobres que en los ricos, con tasas de protección que caen hasta el 50%.
Yuki advierte que el producto aún no ha sido ensayado en humanos, lo que implica que la posibilidad de que llegue su uso está a una década vista.

11 de julio de 2013

HALLAN CEPA BACTERIANA PRODUCTORA DE BIOPLÁSTICO

En la búsqueda de polímeros naturales que sustituyan a los plásticos derivados del petróleo, los científicos acaban de descubrir que un microorganismo de Sudamérica produce poli-beta-hidroxibutirato (PHB), un compuesto biodegradable de interés en las industrias alimentaria, farmacéutica, cosmética y del embalaje. Este hallazgo contribuiría notablemente a la sostenibilidad del planeta.
La protagonista es la bacteria Bacillus megaterium uyuni S29, una cepa que produce la mayor cantidad de polímero del género, la cual se ha localizado en los ojos de agua del famoso salar de Uyuni, en Bolivia. Esta cepa es considerada la mayor productora de bioplásticos que podría revolucionar los nuevos avances e investigaciones de biotecnología ambiental.
Debido a la alta concentración de sal, el salar de Uyuni situado a unos 3650msnm presenta ambientes muy extremos que favorecen la acumulación intracelular de PHB, un material de reserva que la bacteria utiliza en épocas de escasez de nutrientes.
Científicos de la  Universidad Politécnica de Cataluña (UPC) y de la Universidad Tecnológica de Graz (Austria) consiguieron que el bacilo produzca en el laboratorio cantidades significativas del compuesto en condiciones de cultivo similares a las de la industria. La técnica se publica en las revistas "Food Technology & Biotechnology" y "Journal of Applied Microbiology".
Según la doctora Marisol Marqués de la UPC, el biopolímero resultante tiene propiedades térmicas diferentes a los PHB convencionales, lo que hace que se pueda procesar de una forma más fácil, independientemente de su aplicación.
La investigadora reconoce que los costes de producción de los biopolímeros son, en general, todavía elevados y no competitivos si se comparan con los polímeros convencionales, aunque se está avanzando en este sentido.
El equipo consiguió, por primera vez, reducir el elevado peso molecular del PHB mediante enzimas lipasas, así como utilizar el biopolímero para formar nano y microesferas cargadas con antibiótico para poder controlar su difusión por el organismo.

27 de junio de 2013

DISEÑAN BACTERIAS CAPACES DE PRODUCIR LOS PRECURSORES PARA UN POTENTE BIOCOMBUSTIBLE

Nuevas líneas de bacterias han sido diseñadas puede producir a medida los principales precursores de biocombustibles de alto octanaje que algún día podrían reemplazar a la gasolina. Pamela Silver, investigadora de la Universidad de Harvard y lider del equipo, afirma que han sido capaces de programar células para que produzcan precursores específicos de los combustibles.
El etanol, el biocombustible más popular en el mercado, contiene sólo dos tercios de la energía de la gasolina y los combustibles que contienen etanol también corroen las tuberías, tanques y otro tipo de infraestructura utilizada para el transporte y almacenamiento de gasolina. Por otro lado, la quema de la propia gasolina añade enormes cantidades de dióxido de carbono a la atmósfera; sin embargo, la gasolina produce más energía que los biocombustibles actuales cuando se quema en un motor de combustión interna, y permanece en estado líquido a temperaturas que van de las más frías a las más calientes .
Silver y su equipo están buscando nuevas maneras de hacer biocombustibles parecidos a la gasolina que podrían ser almacenados en las estaciones de gas y utilizados para alimentar los coches que ya tenemos. Para desarrollar estos, ellos alistaron bacterias E. coli para que ayuden a hacer los precursores de la gasolina, es decir, ácidos grasos.
En concreto, se están centrando en los ácidos grasos de cadena media, aquellas de cadenas de entre 4 y 12 carbonos de largo. Los ácidos grasos con cadenas más cortas no almacenan la energía suficiente para ser buenos combustibles y tienden a vaporizarse fácilmente, mientras que aquellos con cadenas de más de 12 carbonos son demasiado cerosos. Sin embargo, los ácidos grasos de longitud media poseen la longitud correcta para ser transformados en un combustible líquido lleno de energía para los motores de combustión interna.
Para lograr esto, los investigadores ajustaron una vía metabólica de las bacterias E.coli que produce ácidos grasos. Específicamente, ellos produjeron en masa un ácido graso de ocho carbonos llamado octanoato que puede ser convertido en octano.
En esta vía, el carbono del azúcar de la que se alimenta la bacteria, fluye a través de la vía como un río, creciendo cada vez más mientras fluye. Al final, sale como un ácido graso de cadena larga.
Como primera estrategia los investigadores "represaron parcialmente el río y construyeron una sanja" con un fármaco que bloquea las enzimas que extienden las cadenas de ácidos grasos. Esto causó que los ácidos grasos de cadena media se retengan detrás de la "presa", al tiempo que se permite fluir lo suficiente del "río" para las bacterias y puedan construir sus membranas y permanecer vivas. La estrategia aumentó los rendimientos de octanoato, pero la droga utilizada es demasiado cara para que el proceso sea escalado a nivel industrial.
Por esa razón, los científicos intentaron una segunda estrategia que podría ser escalada con más facilidad. Dejaron que las células crezcan, entonces "represaron el río" utilizando un truco genético. También alteraron genéticamente una segunda enzima que normalmente elabora  ácidos grasos de cadena larga tal que solo extiende los ácidos grasos a ocho átomos de carbono y no más. Esta doble estrategia dio a los científicos los más altos rendimientos de octanoato.
Según Don Ingber, otro miembro del equipo,  la sostenibilidad es uno de los mayores problemas que enfrentan hoy en día, y el desarrollo de los biocombustibles potentes para reemplazar la gasolina es un reto importante, el equipo de científicos ha dado un paso gigante hacia la superación de este desafío al usar estrategias de biología sintética para diseñar microbios que puedan producir octanaje.
A posterior, los científicos planean diseñar bacterias E. coli para convertir el octanoato y otros en alcoholes.

26 de mayo de 2013

DISEÑAN BACTERIAS PRODUCTORAS DE ELECTRICIDAD QUE SOLO NECESITAN DE HIDRÓGENO Y DIÓXIDO DE CARBONO

Investigadores de la Universidad de Massachusetts han diseñado una cepa de bacterias productoras de electricidad que pueden crecer utilizando gas de hidrógeno como su único donante de electrones y dióxido de carbono como su única fuente de carbono.
Amit Kumar, un investigador en el estudio, dijo que esto representa el primer resultado de la producción de corriente únicamente con hidrógeno.
Bajo la dirección de Derek Lovley el grupo de laboratorio ha estado estudiando las bacterias Geobacter desde que Lovley por primera vez aisló Geobacter metallireducens en los sedimentos de arena del río Potomac en 1987. Las especies Geobacter son de interés debido a su capacidad de biorremediación, el potencial de la bioenergía, nuevas capacidades de transferencia de electrones, la capacidad de transferir electrones fuera de la célula y transportar estos electrones a grandes distancias a través de filamentos conductores conocidos como nanocables microbianos.
Kumar y sus colegas estudiaron un pariente de G. metallireducens llamado Geobacter Sulfurreducens, que tiene la capacidad de producir electricidad mediante la reducción de compuestos orgánicos de carbono con un electrodo de grafito como el óxido de hierro o de oro para servir como el único aceptor de electrones. Ellos modificaron genéticamente una cepa de las bacterias que no necesitaban de carbono orgánico para crecer en una celda de combustible microbiana.
Kumar expresó que la cepa modificada produce fácilmente la corriente eléctrica en las celdas de combustible microbianas con gas de hidrógeno como el único donante de electrones y ninguna fuente de carbono orgánico. El investigador además señala que cuando el suministro de hidrógeno a la celda de combustible microbiana era detenido intermitentemente, la corriente eléctrica se reducía significativamente y las células unidas a los electrodos no generaban ninguna corriente significativa.

11 de mayo de 2013

UTILIZAN BACTERIAS PARA IMPEDIR QUE LOS MOSQUITOS TRANSMITAN LA MALARIA


Una buena estrategia contra la malaria podría ser "atacar en lugar de protegerse". Los investigadores y autores de un ensayo publicado en la revista Science han conseguido modificar a los mosquitos que transmiten la enfermedad para hacerles resistentes al parásito responsable del trastorno. Además, también han logrado que esa inmunidad se herede en varias generaciones de los insectos, lo que podría ser fundamental para impedir nuevos contagios en humanos.
La clave de esta nueva estrategia la tiene la bacteria Wolbachia, presente de forma natural en otras especies de insectos. Un equipo dirigido por Zhiyong Xi, de la Universidad de Michigan en Estados Unidos, inyectó la bacteria en ejemplares de mosquitos Anopheles stephensi, la variedad responsable de la mayor parte de los casos de malaria en el sureste asiático.
Su principal obstáculo era conseguir que la infección por Wolbachia pasara de ser temporal a transmitirse de generación en generación, pero los investigadores consiguieron dar con una cepa -wAlbB- que era capaz de pasar de madres a hijos.
En el experimento, el equipo probó distintos niveles de infección cruzando hembras portadoras con machos libres de la bacteria. Y en absolutamente todos los casos, hasta ocho generaciones de insectos heredaban la protección contra el parásito.
En realidad, la bacteria Wolbachia actúa como si de una vacuna específica para los mosquitos se tratase. Así, neutraliza al parásito tanto en el intestino, el lugar donde madura, como en las glándulas salivares, desde donde llega a los humanos a través de cada picotazo.
Aunque aún es pronto para sacar conclusiones definitivas, los autores de este trabajo apuntan que la estrategia, que también se ha probado de forma experimental contra enfermedades como el dengue, puede ser muy importante para el control de la malaria.
Una vez que la bacteria se inocula en una población de mosquitos, sólo hay que dejar que la naturaleza siga su curso y los cruces entre ejemplares transmitan la infección, lo que supondría un importante ahorro en costes e infraestructuras.
Con todo, los especialistas reclaman cautela hasta que otras investigaciones ratifiquen cada punto del trabajo. Una de las cosas vitales que deberán dilucidar estos trabajos es si la especie Anopheles gambiae, la responsable de la mayor parte de las infecciones en África, se comporta de la misma manera con respecto a la bacteria y a su transmisión.

29 de abril de 2013

LOGRAN PRODUCIR DIESEL MEDIANTE E. COLI MODIFICADA GENÉTICAMENTE


Con el apoyo de la compañía angloholandesa Shell, un equipo de la Universidad de Exeter, Reino Unido, pudo hacer que cepas especiales de E. Coli produzcan diesel. Sin embargo, la ventaja aquí es que no necesita ser mezclado con productos derivados del petróleo, como se requiere comúnmente para el biodiesel derivado de aceites de plantas.
De acuerdo con el estudio publicado por PNAS, aunque la tecnología todavía se enfrenta a muchos desafíos significativos de comercialización su similitud con el diesel tradicional lo colocan como una opción viable ante otras alternativas.
Esto también significa que esta nueva modalidad puede utilizarse en suministros de corriente con la infraestructura existente, ya que los motores de tuberías y tanques no necesitan ser modificados para sus especificaciones.
De acuerdo con el profesor John Love, del departamento de Biociencias de la Universidad de Exeter, la producción de un biocombustible comercial que pueda usarse sin necesidad de modificar los vehículos ha sido el objetivo de este proyecto. Por otra parte, también estima que la sustitución por el diésel convencional con un biocombustible de carbono neutral en volúmenes comerciales sería un gran paso hacia el cumplimiento del objetivo de reducir hasta el 80% en las emisiones de gases de efecto invernadero para el año 2050.
Los científicos modificaron los genes de una cepa de E.Coli para que en lugar de transformar el azúcar en grasa, lo que hace de forma natural, lo convierta en moléculas de hidrocarburo sintético con una composición química similar al diésel. Durante este proceso, los científicos comprobaron que es posible crear moléculas de aceite combustible sintético.
La Escherichia coli es el ser vivo más estudiado por el ser humano y, desde la década de los 70, los científicos realizaron proezas con sus genes para lograr que éstos produzcan insulina para la diabetes o proteínas empleadas para el tratamiento del cáncer, por ejemplo.
Por su parte, los medios de transporte consumen en la actualidad el 60% de la producción mundial de petróleo y su demanda podría dispararse de los 85 millones de barriles diarios registrados en 2007, a los 104 millones para 2030.
De acuerdo con los científicos, la mayor parte de la producción de petróleo se encuentra cada vez más en regiones inseguras, lo que ocasiona interrupciones en la distribución y un aumento de los costes.
La técnica funciona a nivel experimental, pero ahora habrá que superar el gran desafío de lograrlo de forma industrial, ya que para lograr una simple cucharilla de diésel sintético se necesitan 100 litros de bacterias. En quince años se sabrá si se consigue.

6 de marzo de 2013

UN PROYECTO DE INVESTIGACIÓN TRATA GENES DE BACTERIAS DE LAS QUE SE EXTRAEN MEDICAMENTOS PARA ABARATAR SU COSTE ACTUAL


Un proyecto coordinado por el Instituto Tecnológico de Castilla y León (ITCL) y en el que participa el laboratorio Inbiotec, persigue el abaratamiento de algunos medicamentos gracias al tratamiento genético de las bacterias de las que se extraen sus principales componentes.
En concreto, el proyecto Biopac ha conseguido que la bacteria Streptomyces tsukubaensis aumente su producción de tracrolimus, un componente empleado en la elaboración de antibióticos y antitumorales.
Según ha explicado el coordinador del proyecto, el doctor Javier Sedano, se trata de un proceso similar al engorde de un pato para la obtención de paté. Así, de la misma manera que este proceso permite que a los ánades les aumente el tamaño de su hígado, el tratamiento de determinados genes de la citada bacteria favorece el incremento de su producción de tacrolimus, lo que abarataría su coste y podría derivar en un descenso también del precio de los medicamentos posteriores.
El proyecto, ya terminado, se encuentra actualmente en fase de revisión y mejora del estudio. Este estudio multidisciplinar ha constado de dos fases, la primera de las cuales se ha basado en el cultivo de cepas de esta bacteria, mientras que la segunda ha tenido por objeto el análisis y tratamiento de los datos, de cara a buscar los mejores genes y conocer cómo clasificarlos y asociarlos a una salida para lograr el resultado óptimo.
En el proyecto, se han estudiado 8.848 genes y se ha extraído una docena de muestras a lo largo de la vida de la bacteria, para analizar las variaciones que éstos sufren a lo largo del tiempo, y varias réplicas biológicas, lo que ha arrojado una cantidad colosal de datos.
Con todos ellos, se ha tomado la colección de genes más importantes; es decir, que más afectan a la producción de tacrolimus, para lo cual se han configurado chips de ADN o 'microarrays' con los que se obtienen valores de expresión con los que luego se trabaja.
Así se determinan perfiles de expresión de genes que se comportan de la misma manera dentro de un grupo, a fin de aislar los grupos que se comportan de una forma similar y que, en este caso, hagan crecer el tacrolimus.
Una vez llegado a este punto, el siguiente paso en la investigación fue buscar el grupo que más afecta a la producción, al que se sometió a distintos procesos como radiaciones UVA y cambios de temperatura o biológicos para analizar su impacto y concretar con cuál de ellos se amplía la generación del producto por parte de estas bacterias.
Como ha reiterado Sedano, el objetivo final de todo esto es abaratar la fabricación de antibióticos o antitumorales, ya que el estudio, limitado a la bacteria Streptomyces tsukubaensis, podría ser reutilizable para otras bacterias. No obstante, por el momento no se ha cuantificado el ahorro que podría suponer, ya que no se disponen de los datos suficientes.

22 de febrero de 2013

SELECCIONAN BACTERIAS PARA CONFIGURAR SISTEMAS DE DEPURACIÓN DE AGUAS A LA CARTA Y DE BAJO COSTE

Investigadores de la Universidad de Granada han configurado biorreactores de bajo coste que depuran aguas residuales e industriales Se trata de recipientes en los que se lleva a cabo un proceso químico que involucra a bacterias, en este caso, seleccionadas 'a la carta' para eliminar contaminantes.
En este estudio los científicos han demostrado el desarrollo de biopelículas microbianas específicas cuando modificaban las características técnicas del soporte donde se desarrollan, consiguiéndose la optimización de los procesos de depuración.
Los expertos han comprobado que se pueden configurar biorreactores adecuados para cada tipo de residuo, ya que los microorganismos acaban adaptándose a las condiciones ambientales que les definen. El investigador de la Universidad de Granada Jesús González-López explica que han analizado los cambios de microorganismos en función del diseño del reactor y cuando son forzados a que descontaminen nitrógeno, por ejemplo, se adaptan al medio. Así se puede alcanzar una potencialidad casi ilimitada para degradar cualquier compuesto, si se ajustan las condiciones ambientales.
Para lograr esta especialización de las bacterias, los investigadores tuvieron que estudiar los tipos de microorganismos existentes en el reactor y cómo iban respondiendo a los cambios ambientales para un contaminante concreto. Los investigadores analizaron cómo respondían los microorganismos ante diferentes compuestos, por ejemplo, un producto tóxico disuelto en el agua, planteando qué condiciones tendrían que facilitar para conseguir que los microorganismos sobrevivieran y degradaran de forma selectiva a los contaminantes presentes.
Este conocimiento permite el desarrollo de biorreactores ‘a la carta’, es decir, sistemas biológicos de bajo coste adaptados a cada contaminante. Otra de las novedades del estudio es la aplicación de técnicas moleculares al estudio de las  poblaciones microbianas. Estas técnicas genéticas detectan una mayor cantidad de microorganismos en el biorreactor en comparación con un 1 o 2 por ciento de los organismos presentes en el sistema de depuración biológica mediante el cultivo.
Hasta el momento los biorreactores se han probado a escala de planta piloto, los investigadores pretenden trasladar ahora los resultados a una depuradora real.
Los biorreactores con los que trabajan en la Universidad de Granada son sistemas biológicos para el tratamiento de efluentes domésticos e industriales donde las bacterias transforman los residuos en compuestos no contaminantes, con lo que permiten que el agua se pueda reutilizar. Los investigadores incorporan distintos soportes inertes donde se depositan microorganismos que forman biopelículas que filtran el agua y la depuran. En contacto en el líquido elemento, las bacterias degradan los contaminantes o los biotransforman. El objetivo es que el agua se pueda reutilizar a un bajo costo de explotación, no para el consumo humano, pero sí como agua de riego de campos de golf o cultivos.

20 de febrero de 2013

MICROORGANISMOS EXTREMÓFILOS PARA SU APLICACIÓN BIOTECNOLÓGICA


Resisten temperaturas inferiores al punto de congelación del agua, dosis masivas de rayos ultravioleta y valores de acidez que podrían corroer un metal. Estoy hablando de bacterias y otros microorganismos que estudia la ciencia para aprender de ellos y utilizarlos en la industria, entre otras aplicaciones.
Se llaman organismos extremófilos, al estar adaptados a vivir en ambientes cuyas características físicas y/o químicas se apartan enormemente de lo que el ser humano considera las condiciones más adecuadas para la vida, estos organismos han adquirido asombrosas capacidades fisiológicas, explicó el doctor Walter Mac Cormack, director del Departamento de Microbiología Ambiental y Ecofisiología del Instituto Antártico Argentino (IAA). 
Más allá del interés académico que representa el conocimiento de dichas capacidades, tienen potencial aplicación en muy diversos procesos utilizados en la microbiología industrial y la biotecnología. Según Mac Cormack, las enzimas de estos organismos extremófilos, por ejemplo, pueden catalizar reacciones con alto grado de especificidad en condiciones muy desfavorables. Unos años atrás Cormack analizó una muestra marina antártica y describió a Bizionia argentinensis, una bacteria que logra vivir de manera permanente a una temperatura cercana al punto de congelación del agua.
Las enzimas provenientes de ese tipo de organismos son actualmente utilizadas con gran éxito. Y su búsqueda y estudio representa uno de los campos de mayor actividad de la microbiología y la biotecnología actuales. Mac Cormack  además que solamente la aplicación de la enzima ADNpolimerasa de la bacteria Thermus aquaticus (capaz de prosperar en altas temperaturas) en una técnica para “fotocopiar” muestras de ADN que representa un mercado de varios cientos de millones de dólares anuales y ha permitido el desarrollo de metodologías de biología molecular que se aplican en campos tan diversos como el diagnóstico clínico, la medicina forense, el análisis de alimentos y prácticamente cualquier área de investigación biológica.
Sobre Bizionia argentinensis, cuyo genoma ya fue secuenciado, Mac Cormack puntualizó que sus enzimas están adaptadas a trabajar a temperaturas muy bajas. Un análisis profundo de la secuencia génica de Bizionia argentinensis, dijo, aportará novedosa información acerca de los genes que posee este microorganismo y de las adaptaciones que ha adquirido durante su evolución. Si como se estima, algunas de las funciones a descubrir tienen aplicación industrial, se abrirá un vasto campo de desarrollo basado en la optimización de los procesos industriales y biotecnológicos. 

4 de febrero de 2013

UNA BACTERIA CONVIERTE TOXINAS EN ORO


Una especie de bacteria puede convertirse en el «rey Midas» de la naturaleza, ya que es capaz de crear diminutas pepitas de oro para ayudarse a crecer en las soluciones tóxicas del metal precioso. Investigadores creen que la molécula con la que las bacterias crean estas partículas podría ser utilizada en el futuro para recoger oro de los desechos mineros.
Los microbios pueden utilizar algunos metales para desarrollarse, como el hierro, pero otros les resultan letales, como es el caso del oro y la plata. El oro soluble es tóxico para la mayoría de las microbios, pero resulta que se han encontrado biopelículas -ecosistemas microbianos con diferentes microorganismos- sobre la superficie de las pepitas de oro. Y esas bacterias pueden ser, precisamente, las culpables de la acumulación del oro sólido.
Frank Reith, un microbiólogo ambiental en la Universidad de Adelaida (Australia), encontró ya hace diez años algunas de las primeras evidencias de que las bacterias prosperan en partículas de oro. En varios sitios, a miles de kilómetros de distancia, encontró una bacteria, la Cupriavidus metallidurans, que desintoxica el oro disuelto acumulando pequeñas nanopartículas de oro en el interior de sus células.
Ahora, un estudio firmado por un equipo de científicos canadienses de la Universidad McMaster de Hamilton (Ontario) en la revista Nature Chemical Biology se ha preguntado si otra bacteria, la Delftia acidovorans, actúa de forma similar. Descubrieron que esta bacteria no metaboliza el oro soluble como su congénere, si no que lo solidifica en el exterior, bajo una forma no tóxica. Utiliza una molécula para crear estructuras sólidas complejas, similares a las que se encuentran en las pepitas de oro. El proceso se desarrolla en unos segundos, a temperatura ambiente y en condiciones de acidez neutra. Según los científicos, la bacteria es aún más eficaz que los productos utilizados actualmente por la industria para producir nanopartículas de oro.
Los investigadores creen que se podría utilizar esta bacteria para crear oro de las aguas residuales producidas en las minas. Sería como sacar un tesoro de la basura.

24 de enero de 2013

DESCUBREN UNA HABILIDAD OCULTA DE LAS BACTERIAS QUE PUEDE FACILITAR LAS TERAPIAS CON CÉLULAS MADRE

Investigadores de la Universidad de Edimburgo (Reino Unido) han descubierto que las bacterias son capaces de cambiar la composición de las células nerviosas de forma que toman las propiedades de las células madre. Dado que las células madre pueden desarrollarse en cualquiera de los diferentes tipos de células que hay en el cuerpo, incluyendo el hígado y las células del cerebro, imitar este proceso podría ayudar a la investigación en una amplia gama de condiciones degenerativas.
Los científicos hicieron el descubrimiento estudiando las bacterias que causan la lepra, una enfermedad neurodegenerativa infecciosa. El estudio, llevado a cabo en ratones y publicado en 'Cell', encontró que en las etapas tempranas de la infección, las bacterias fueron capaces de protegerse del sistema inmunológico del cuerpo escondiéndose en las células nerviosas, conocidas como células de Schwann o células gliales, y cuando la infección se estableció completamente, las bacterias fueron capaces de convertir las células nerviosas en células madre.
Al igual que las células madre normales, estas células eran pluripotentes, lo que significa que podrían convertirse en otros tipos de células, por ejemplo células musculares, lo que permitió a las bacterias propagarse por los tejidos del cuerpo, explican los investigadores. Además, las células madre generadas por bacterias también pueden secretar proteínas especializadas, llamadas quimiocinas, que atraen a las células inmunes, que a su vez recogen las bacterias y la propagación de la infección.
Los científicos creen que estos mecanismos, utilizados por las bacterias de la lepra, podría existir en otras enfermedades infecciosas. El conocimiento de esta táctica recientemente descubierta que utilizan las bacterias para propagar la infección podría ayudar a la investigación para mejorar los tratamientos y el diagnóstico precoz de las enfermedades infecciosas.
"Hemos encontrado una nueva arma en el arsenal de una bacteria que le permite difundirse de manera efectiva en el cuerpo mediante la conversión de las células infectadas a las células madre. Una mayor comprensión de cómo ocurre esto podría ayudar a la investigación para el diagnóstico más temprano de enfermedades infecciosas bacterianas, como la lepra", explica el director de la investigación, Anura Rambukkana, del Centro de Medicina Regenerativa de la Universidad de Edimburgo.
En la investigación se demostró que cuando una persona infectada de células de Schwann se reprograma para convertirlas como células madre, pierde la función de las células de Schwann para proteger las células nerviosas, que transmiten señales al cerebro, lo que lleva a dañar los nervios.
Según Rambukkana esto es muy interesante, ya que es la primera vez que se ve que las células del tejido funcional adultas pueden ser reprogramadas en células madre por una infección bacteriana natural, que además no conlleva el riesgo de crear células tumorales. Entonces potencialmente se podrían utilizar las bacterias para modificar la flexibilidad de las células, convirtiéndolas en células madre y luego utilizar los antibióticos estándar para matar las bacterias completamente de modo que las células puedan ser trasplantadas de forma segura al tejido que ha sido dañado por una enfermedad degenerativa.

5 de enero de 2013

DOS CEPAS DE BACTERIAS AUMENTAN LA PRODUCCIÓN Y CALIDAD DE TOMATES Y PIMIENTOS


Durante años el equipo de investigación (GIR) 'Interacciones Microorganismo Planta' se ha dedicado a estudiar la simbiosis entre los microorganismos del género Rhizobium y las plantas leguminosas, que se establece por la formación de nódulos en las raíces de estos vegetales y que tiene beneficios mutuos para plantas y bacterias.
Una de sus investigaciones ha demostrado que dos cepas de Rhizobium que se aislaron de dos leguminosas, el trébol y la alubia, presentan una buena actividad como promotores del crecimiento vegetal in vitro y que dan buenos resultados en la producción no sólo de las plantas hospedadoras, sino también en tomates y pimientos.
El resultado es que la inoculación de estas cepas consigue un incremento en el desarrollo y en la producción de las dos plantas. En el caso del pimiento se trata de un aumento muy significativo en cantidad, mientras que en el caso del tomate se incrementa sobre todo la calidad.
Esta calidad se establece a través de catas y, de una forma más objetiva, a través de la medición de componentes como el potasio, el fósforo, el nitrógeno o la presencia de componentes fenólicos, sustancias que se asocian con una mayor protección frente a patologías cardiacas.
Los científicos conocen los mecanismos que provocan estos efectos positivos para la planta. Por ejemplo, estas dos cepas producen fitohormonas y además, incrementan en la planta los niveles de nitrógeno y fósforoéste último un nutriente  muy importante responsable de cualidades organolépticas como el sabor o el colo. Además, una de ellas también produce compuestos sideróforos, que captan hierro y dificultan el crecimiento de hongos y otros microorganismos patógenos para la planta.
Lo más importante de esta línea de investigación es que abre una alternativa para practicar una agricultura ecológica segura, pues a los cultivos ecológicos no se les añaden fertilizantes nitrogenados, pero sí estiércol como abono y esto podría ocasionar problemas sanitarios como la presencia de cepas patógenas de Escherichia coli.
El equipo intenta sustituir el empleo masivo de abonos químicos por microorganismos beneficiosos que le suministren a la planta los nutrientes que necesita. Estas cepas se encuentran en la naturaleza, pero hay que seleccionarlas y estudiar sus efectos con el objetivo de conseguir inoculantes seguros que se puedan aplicar en todo tipo de cultivos. En este caso, se ha investigado en plantas no leguminosas, pero el género Rhizobium es bien conocido sobre todo por sus interacciones con las leguminosas.
Además, se trata de microorganismos ampliamente estudiados por este y otros grupos de investigación del mundo en las últimas décadas, de manera que está comprobada su seguridad pues se hablando de interacciones beneficiosas entre plantas y microorganismos que aportan a las plantas sustancias que les permiten crecer, nutrirse y defenderse mejor de patógenos.
Según los científicos, la agricultura del futuro exige eliminar gradualmente el uso de fertilizantes químicos por la contaminación ambiental que ocasionan y porque consumen muchos recursos para su fabricación. De hecho, la normativa europea apuesta por una agricultura sostenible que sólo puede desarrollarse a través de la biotecnología.