"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."

9 de febrero de 2015

CIENTÍFICOS LOGRAN REPROGRAMAR PLANTAS PARA QUE SEAN MAS TOLERANTES A LA SEQUÍA MEDIANTE BIOLOGÍA SINTÉTICA.

La investigación liderada por la Universidad de California-Riverside en biología sintética ofrece un método que reprograma plantas para que consuman menos agua después de ser expuestos a un producto agroquímico, abriendo nuevas puertas para el mejoramiento de cultivos.
Los cultivos y otras plantas se enfrentan constantemente a las condiciones adversas del medio ambiente, tales como el aumento de las temperaturas y la disminución de los suministros de agua dulce, los cuales reducen la producción y le cuesta a los agricultores miles de millones de dólares anuales.
La sequía es un importante factor de estrés ambiental que afecta el crecimiento y desarrollo de las plantas. Cuando las plantas se encuentran con la sequía, ellas naturalmente producen ácido abscísico (ABA), una hormona del estrés que inhibe el crecimiento de la planta y reduce el consumo de agua. Específicamente, la hormona activa un receptor (proteína especial) en las plantas como si fuera una mano que encaja en un guante, lo que resulta en cambios beneficiosos tales como el cierre de los estomas, para reducir el agua perdida ayudando a las plantas a sobrevivir.
Si bien es cierto que los cultivos podrían ser rociados con ABA para ayudar a su supervivencia durante una sequía, el ABA es costoso hacer, se inactiva rápidamente en el interior de las células vegetales y es sensible a la luz, y por lo tanto no se le ha encontrado una utilidad mucha directa en la agricultura. Varios grupos de investigación están trabajando para desarrollar imitadores sintéticos del ABA para modular la tolerancia a la sequía, pero una vez descubiertos estos imitadores se espera que estos enfrenten largos y costosos procesos de desarrollo.
La mandipropamida agroquímica, sin embargo, ya se usa ampliamente en la producción agrícola para controlar las plagas de los cultivos de frutas y hortalizas. ¿Podrían los cultivos amenazados por la sequía ser diseñados para responder a la mandipropamida como si se tratara del ABA, y por lo tanto mejorar su supervivencia durante la sequía? Sí, según un equipo de científicos, dirigido por Sean Cutler de la Universidad de California-Riverside.
Los investigadores trabajaron con Arabidopsis y la planta del tomate. En el laboratorio, ellos utilizaron métodos biológicos sintéticos para desarrollar una nueva versión de los receptores del ácido abscísico de estas plantas, diseñados para ser activados por la mandipropamida en lugar del ABA. Los investigadores demostraron que cuando las plantas reprogramadas eran rociadas con mandipropamida, estas sobrevivían efectivamente a las condiciones de sequía mediante la activación de la ruta del ácido abscísico, que cierra los estomas en sus hojas para evitar la pérdida de agua.
El hallazgo pone de manifiesto el poder de los métodos de biología sintética para la manipulación de los cultivos y abre nuevas puertas para el mejoramiento de cultivos que podrían beneficiar a una población mundial en crecimiento.
Sean Cutler comenta que el reutilizar con éxito un producto agroquímico para una nueva aplicación mediante la ingeniería genética de un receptor vegetal no se había hecho antes. Ellos anticipan que este método de reprogramación de respuestas vegetales utilizando la biología sintética permitirá a otros agroquímicos controlar otras características útiles tales como las tasas de resistencia a enfermedades o de crecimiento.
Cutler explicó que descubrir un nuevo producto químico y luego tener que evaluarlo y aprobarlo para su uso es un proceso extremadamente engorroso y costoso que puede tomar años. Mediante la biología sintética se tiene eludido este obstáculo pues en esencia, como se ve en este trabajo, ellos tomaron algo que ya funciona en el mundo real y reprogramaron una planta de modo que el químico pudo controlar el uso del agua.
La ingeniería de proteínas es un método que permite la construcción sistemática de muchas variantes de proteínas probándolas también para ver nuevas propiedades. Cutler y sus colaboradores utilizaron la ingeniería de proteínas para crear receptores vegetales modificados en las que la mandipropamida podría encajar y potentemente causar la activación del receptor. El receptor diseñado se introdujo en Arabidopsis y en plantas de tomate, que luego respondieron a la mandipropamida como si estuvieran siendo tratadas con ABA. En ausencia de la mandipropamida, estas plantas mostraron diferencias mínimas en comparación con las plantas que no poseen proteínas modificadas.

30 de enero de 2015

MEDIANTE EL USO DE UN NUEVO CÓDIGO GENÉTICO RELACIONADO A AMINOÁCIDOS SINTÉTICOS, CIENTÍFICOS BUSCAN GENERALIZAR EL USO DE OGMs DE MANERA MAS SEGURA EN EL MEDIO AMBIENTE.

Científicos de la Universidad de Yale han ideado una manera de asegurarse de que los organismos modificados genéticamente (OGMs) puedan ser confinados de una manera segura en el medio ambiente, superando el principal obstáculo para el uso generalizado de los OMGs en la agricultura, la producción de energía, la gestión de residuos, y la medicina.
Los investigadores de la Universidad de Yale reescribieron el ADN de una cepa bacteriana de modo que requiera la presencia de un aminoácido sintético especial que no existe en la naturaleza para activar los genes esenciales para el crecimiento. 
Farren Isaacs, profesor asistente en el Departamento de Biología Molecular, Celular y  del Desarrollo y en el Instituto de Biología de Sistemas en West Campus, y autor principal del artículo indica que esta es una mejora significativa de los alcances existentes en la biocontención de los OGMs y establece importantes salvaguardias para estos organismos en ambientes agrícolas, y más ampliamente, para su uso en la biorremediación ambiental e incluso en terapias médicas.
Isaacs, Jesse Rinehart, Alexis Rovner y demás colegas de Yale llaman a estas nuevas bacterias organismos genómicamente recodificados (OGRs) porque tienen un nuevo código genético ideado por el equipo de investigadores. El nuevo código permitió al equipo vincular el crecimiento de las bacterias a los aminoácidos sintéticos que no se encuentran en la naturaleza, estableciendo una salvaguardia importante que limita la propagación y la supervivencia de estos organismos en ambientes naturales.
En un segundo estudio, Isaacs, Ryan Gallagher, y Jaymin Patel diseñaron una estrategia de salvaguardias de múltiples capas que también limitan el crecimiento de los OGMs a ambientes que contienen un conjunto diferente de moléculas sintéticas. Este estudio describe un conjunto complementario de salvaguardias diferentes y portátiles capaces de asegurar una amplia gama de organismos.
Estos OGMs seguros mejorarán la eficiencia de este tipo de organismos manipulados, que ahora solo están siendo utilizados en sistemas cerrados, tales como la producción de productos farmacéuticos, combustibles y productos químicos nuevos. Las preocupaciones sobre el uso de OGMs en entornos abiertos, sin embargo, ha limitado su adopción en otras áreas.
Los autores también dicen que el nuevo código emparejado con aminoácidos artificiales permitirá a los científicos crear OGMs más seguros para su uso en sistemas abiertos, que incluyen la mejora de la producción de alimentos, probióticos diseñados para combatir una serie de enfermedades y microorganismos especializados que limpien los derrames de petróleo y vertederos.
Finalmente, el Sr. Isaacs comenta que a medida que la biología sintética conduce a la aparición de OGMs más sofisticados para hacer frente a los grandes desafíos mencionados, los científicos deben asumir un papel proactivo en el establecimiento de soluciones seguras y eficaces para la biotecnología, similares a aquellos quienes han trabajado para asegurar la Internet en la década de 1990.

24 de enero de 2015

AVANCES EN LA COMPRENSION DE LAS INTRINCADAS REDES REGULADORAS DE LOS GENES QUE CONTROLAN EL ENGROSAMIENTO DE LA PARED CELULAR VEGETAL PODRÍAN LLEVAR A MEJORAR LA EFICIENCIA EN LA PRODUCCIÓN DE BIOCOMBUSTIBLES

Unos genetistas especializados en plantas que incluyen a Sam Hazen de la Universidad de Massachusetts Amherst, y Siobhan Brady de la Universidad de California, han resuelto las redes reguladoras de los genes que controlan el engrosamiento de la pared celular por la síntesis de tres polímeros, la celulosa, la hemicelulosa y la lignina.
Los autores dicen que el más rígido de los polímeros, la lignina, representa un gran obstáculo para extraer los azúcares de la biomasa vegetal que pueden ser utilizados para producir biocombustibles. Se espera este avance sirva como base para la comprensión de la regulación de un componente vegetal integral y complejo (pared celular) y como un mapa de cómo los futuros investigadores podrían manipular los procesos formadores de polímeros para mejorar la eficiencia de la producción de biocombustibles.
Los tres polímeros claves, que se encuentran en tejidos vegetales conocidos como xilema, proporcionan a las plantas resistencia mecánica y de células resistentes al agua que transportan el liquido elemento. Trabajando en la planta modelo Arabidopsis thaliana, Hazen, Brady y sus colegas exploraron cómo un gran número de factores de transcripción interconectados regulan el engrosamiento del xilema y de la pared celular.
Entender cómo se controlan las proporciones relativas de estos biopolímeros en el tejido vegetal abriría oportunidades para rediseñar las plantas para el uso de biocombustibles.En este estudio se identificaron cientos de nuevos reguladores los cuales ofrecen una importante visión de la regulación del desarrollo de la diferenciación de las células del xilema.
En concreto, usando una serie de sistemas para identificar las interacciones proteína-DNA, ellos realizaron el barrido de más de 460 factores de transcripción expresados en el xilema de la raíz para explorar su capacidad de unirse a los promotores de unos 50 genes que se sabe están involucrados en los procesos que producen los componentes de la pared celular. Hazen indica que esto reveló una red altamente interconectada de más de 240 genes y más de 600 interacciones proteína-DNA que no se habían conocido antes.
Ellos también encontraron que cada gen de la pared celular en la red reguladora del xilema está unido a un promedio de cinco factores de transcripción diferentes de 35 familias distintas de proteínas reguladoras. Además, muchos de los factores de transcripción forman un número sorprendentemente grande de bucles feed-forward que coregulan los genes diana.
En otras palabras, en lugar de una serie de interruptores de encendido y apagado que conduce a una acción final como la fabricación de celulosa, la mayoría de las proteínas, incluyendo los reguladores del ciclo celular y la diferenciación se unen directamente a los genes de celulosa y a otros reguladores de la transcripción. Esto le da a las plantas un gran número de posibles combinaciones para responder y adaptarse al estrés ambiental, tales como la sal o la sequía, señalan los autores.
Aunque este estudio pudo identificar nodos interactivos, las técnicas utilizadas no fueron capaces de permitir a los autores determinar exactamente que tipos de bucles fee-forward están presentes en la red de regulación del xilema. Sin embargo, el trabajo ofrece un marco para futuras investigaciones que deberian permitir a los investigadores identificar maneras de manipular esta red y diseñar cultivos energéticos para la producción de biocombustibles.

29 de diciembre de 2014

LOGRAN PRODUCIR TRECE NUEVOS TERPENOS EN STREPTOMYCES MEDIANTE EL ANÁLISIS DE BASES DE DATOS DE GENOMAS DE UN GRUPO DE BACTERIA

Los terpenos son compuestos aromáticos responsables de los diferentes aromas de los aceites esenciales de las plantas y de las resinas de los árboles. Desde el descubrimiento de los mismos hace más de 150 años, los científicos han aislado unos 50.000 diferentes compuestos terpénicos derivados de plantas y hongos. Las bacterias y otros microorganismos son conocidos también por hacer terpenos, pero han recibido mucho menos atención.
Una nueva investigación de la Universidad de Brown, Estados Unidos, muestra que la capacidad genética de las bacterias para hacer terpenos está muy extendida. Usando una técnica especializada para tamizar a través de las bases de datos genómicas de una variedad de bacteria, los investigadores encontraron 262 secuencias de genes que probablemente codifican para terpeno sintasas (enzimas que catalizan la producción de terpenos). Luego, los investigadores utilizaron varias de aquellas enzimas para aislar 13 terpenos de origen bacteriano no identificados previamente. Los hallazgos sugieren que las bacterias representan una fuente fértil para el descubrimiento de nuevos productos naturales.
David Cane, profesor de química en la Universidad de Brown, comenzó a trabajar hace unos 15 años para entender cómo las bacterias hacen terpenos. En ese momento, las primeras secuencias genómicas de ciertas clases de bacterias estaban empezando a salir. Cane y sus colegas tuvieron la idea de encontrar las enzimas responsables de producir terpenos mirando las secuencias de los genes que estaban siendo descubiertas.
Para ello, Cane buscó a través de los datos genómicos recopilados para un grupo de bacterias llamadas Streptomyces, en busca de secuencias similares a las conocidas que expresan la terpeno sintasas en plantas y hongos. Finalmente, se encontró que, efectivamente, los Streptomyces tienen genes que codifican terpeno sintasas y que esas enzimas podrían ser utilizadas para hacer terpenos.
Las secuencias bacterianas verificadas que encontró Cane permitieron a otros investigadores refinar las búsquedas posteriores de genes adicionales de terpeno sintasas utilizando las secuencias bacterianas como consulta de búsqueda en vez de las secuencias de plantas o secuencias de hongos, lo que debería dar un mayor grado de similitud.
El siguiente paso fue verificar que estas secuencias, efectivamente codifican para enzimas capaces de hacer terpenos. Probar todos los 262 genes no era práctico, por lo que el equipo eligió algunos que podrían darles la mejor oportunidad de encontrar compuestos terpénicos que anteriormente no habían sido identificados. Buscaron secuencias que no parecen encajar claramente en categorías previamente conocidas de terpenos.
Después de haber seleccionado unos cuantos, el equipo hizo uso de una bacteria Streptomyces genéticamente modificada como una biorefinería para generar terpenos. En dicha bacteria se eliminaron los genes que son responsables de producir la mayoría de sus productos nativos, pero dejaron detrás toda la capacidad para proporcionar los materiales de partida y manejar la acumulación de productos.
Al tomar algunas de las secuencias de genes que encontraron y empalmándolos en su organismo de ensayo, los investigadores pudieron dejar que las Streptomyces generen el producto usando las instrucciones del nuevo gen introducido. Usando este método, fueron capaces de producir 13 terpenos previamente desconocidos, cuyas estructuras se verificaron por espectrometría de masas y espectroscopia de resonancia magnética nuclear.
Cane comenta que es un gran paso hacia adelante en el área, ya que proporciona un paradigma de cómo se puede descubrir muchas sustancias nuevas; también es un buen ejemplo de cómo se puede utilizar el análisis de secuencias para identificar genes de interés y luego aplicar técnicas genéticas, moleculares y microbiológicas para producir sustancias químicas de interés. El trabajo también sugiere que puede haber muchos productos terpénicos nuevos escondidos y aún por descubrir en los genomas de bacterias.

13 de diciembre de 2014

DESCUBREN BACTERIAS CAPACES DE DEGRADAR PLÁSTICO EN UNA ÚNICA ETAPA DENTRO DE LOS INTESTINOS DE LAS LARVAS DE UNA ESPECIE DE POLILLA

Es bien conocido que el plástico suele permanecer en el medio ambiente durante muchísimos años sin descomponerse, contribuyendo de forma notable a los problemas medioambientales.
Ahora, un grupo de científicos han comprobado que ciertas bacterias del intestino de unas larvas de polilla, de la que se sabe que ingiere trozos de envases de alimentos, son capaces de degradar polietileno, el plástico más habitual. El hallazgo hecho por el equipo de Jun Yang, de la Universidad de Beihang en Pekín, China, podría llevar a nuevas formas de deshacerse de los persistentes residuos de plástico.
La industria global de los plásticos produce unos 140 millones de toneladas de polietileno cada año. Buena parte de él va a parar a bolsas, botellas y cajas que muchos de nosotros utilizamos regularmente, y que después desechamos.
Durante muchos años, la comunidad científica ha estado intentando averiguar cómo hacer que esta basura plástica desaparezca. En algunos de los estudios más recientes, se ha intentado hacer que ciertas bacterias presentes en el plástico lo degraden, pero esto requería exponerlo primero a la luz o al calor. El equipo de Yang quería encontrar bacterias que pudieran degradar el polietileno en un único paso.
Los investigadores se fijaron en una larva de polilla de la especie Plodia interpunctella, que en su fase de oruga ingiere trozos de plástico. Encontraron que al menos dos cepas de microbios intestinales de esas orugas, Enterobacter asburiae y Bacillus sp., pueden degradar el polietileno sin un paso de pretratamiento.
Los científicos descubrieron que después de un periodo de incubación de 28 días de las dos cepas en películas de polietileno se observó una disminución en la hidrofobicidad de las películas de polietileno. Se observó también un daño obvio que incluía hoyos y cavidades de 0.3 a 0.4 μm de profundidad en las superficies de las películas de polietileno usando un microscopio electrónico de barrido y un microscopio de fuerza atómica.
Los cultivos de las cepas Enterobacter asburiae y Bacillus sp. en suspensión (108 células/mL)  fueron capaces de degradar aproximadamente 6.1 ± 0.3% y 10.7 ± 0.2% de las películas de polietileno (100mg), respectivamente, en un periodo de incubación de 60 días. Los pesos moleculares de las películas residuales de polietileno fueron mas bajos, y la liberación de 12 productos residuales solubles en agua también fueron detectados. Los resultados demostraron la presencia de bacterias degradadoras de polietileno en los intestinos de las larvas y el descubrimiento abre un alentador camino hacia una forma nueva y directa de biodegradar plástico.