"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."

27 de octubre de 2014

CIENTÍFICOS ESTÁN EN BÚSQUEDA DE BACTERIAS CON ALTO POTENCIAL BIOFERTILIZANTE PARA REDUCIR EL USO DE FERTILIZANTES Y PESTICIDAS QUÍMICOS

Neiker-Tecnalia, el Instituto Vasco de Investigación y Desarrollo Agrícola, está trabajando para seleccionar bacterias autóctonas con potencial de biofertilizantes, debido al efecto estimulante que tienen en la asimilación de nutrientes por las plantas, la producción de fitohormonas y control de fitopatógenos. La investigación es de gran interés para los agricultores debido a que los biofertilizantes basados en bacterias constituyen una alternativa a los fertilizantes químicos convencionales que son caros y menos sostenible desde el punto de vista ambiental.
El objetivo final en la selección de bacterias autóctonas con un potencial de biofertilizantes es crear un banco de cepas bacterianas para que sean utilizadas posteriormente en formulaciones de biofertilizantes. Estas bacterias tienen la capacidad de aumentar la biodisponibilidad de los nutrientes presentes en el suelo de modo que los cultivos puedan asimilarlos; lo que es más, producen hormonas que estimulan el crecimiento de las plantas y fomentan el desarrollo de la raíz. Otra de sus ventajas es que incluso luchan contra otros microorganismos en el suelo que causan enfermedades a las plantas.
El objetivo de todo biofertilizante es complementar y, en su caso, sustituir a los fertilizantes químicos convencionales por lo que su uso se puede reducir con los beneficios económicos y ambientales resultantes. En este aspecto, las bacterias utilizadas en las formulaciones de biofertilizantes animan a las plantas a absorber una mayor cantidad de nutrientes que, incluso si están presentes de forma natural en el suelo, en ocasiones no puede ser asimilada por las plantas, porque están en una forma insoluble. Los fertilizantes químicos convencionales, sin embargo, suplementan el suelo con elementos químicos que, a pesar de que funciona como un fertilizante, pueden terminar contaminando acuíferos si no se aplican en la dosis correcta y en el momento oportuno. 
Por el contrario, las bacterias que contienen capacidades biofertilizantes compiten con otros microorganismos en el suelo y pueden obstaculizar la aparición de plagas en los cultivos, reduciendo así al mínimo el uso de pesticidas. 
Los investigadores de Neiker-Tecnalia aislaron cepas bacterianas autóctonas pertenecientes a muestras de suelo y tejido vegetal. Ellos seleccionaron  los mejores candidatos por medio de análisis in vitro y en este momento se están ejecutando las pruebas en cultivos de lechuga (elegidos por su rápido crecimiento) en cámaras especiales para el crecimiento bajo condiciones controladas. Uno de los objetivos de este experimento es poner a prueba la capacidad de las bacterias con capacidades biofertilizantes y biofertilizantes producidos de manera artesanal por los agricultores locales en comparación con biofertilizantes comerciales y fertilizantes químicos convencionales para aumentar la productividad en suelos pobres y, en concreto, para luchar contra la impacto del patógeno Sclerotinia sclerotiorum que afecta a las raíces. En el experimento también se pondrá a prueba la eficacia de otros fertilizantes orgánicos como el abono bokashi  de origen japonés. El paso final será probar la efectividad de los biofertilizantes en condiciones de campo reales. 
La investigación de Neiker-Tecnalia está abriendo un canal de gran interés para reducir el uso de fertilizantes y pesticidas sintetizados químicamente que conllevan riesgos ambientales y constituyen un coste económico importante para los agricultores.

14 de octubre de 2014

DESCUBREN NUEVAS BACTERIAS DE ORIGEN MARINO CAPACES DE PRODUCIR COMPUESTOS FARMACOLÓGICOS IMPORTANTES

Investigadores de la Universidad de Oviedo en España han descubierto bacterias productoras de fármacos en ecosistemas de algas y corales del mar Cantábrico. El estudio se enmarca dentro de las líneas de investigación del recientemente creado Observatorio Marino de Asturias (OMA) sobre la exploración de la vida marina del Cantábrico y la explotación de sus recursos naturales.
El equipo científico está centrado en el estudio de los actinomicetos, unos microorganismos esenciales para la vida en nuestro planeta y la salud humana, ya que son los principales productores de antibióticos, antitumorales y otros fármacos que se utilizan en medicina. Aunque tradicionalmente se han considerado bacterias de suelo, en estos últimos años se ha hecho evidente su presencia en ambientes marinos y en simbiosis con otros seres vivos como animales y plantas. 
La lider del equipo, la microbióloga Gloria Blanco, comenta que los océanos son en la actualidad una fuente alternativa de aislamiento de nuevos géneros de actinomicetos, cuyo estudio se ha hecho muy atractivo debido al creciente número de nuevos y potentes compuestos de interés farmacológico que producen. Esta línea de investigación se incluye así dentro de las nuevas tendencias de la comunidad científica internacional para el descubrimiento de nuevos medicamentos.
La hipótesis de trabajo se basa en la exploración de nuevos hábitats, a fin de obtener nuevas especies o cepas que produzcan moléculas naturales con potencial farmacológico. Los trabajos previos llevados a cabo por los expertos han permitido encontrar en el Cantábrico una gran diversidad de actinomicetos productores de moléculas con actividades antibióticas y antitumorales, y que se encuentran asociados a distintos organismos en diferentes ecosistemas.
Los primeros hallazgos de actinomicetos se realizaron en algas intermareales recogidas en diferentes playas de Gijón desde 2010. En este último año también se han podido aislar poblaciones muy variadas de estas bacterias actinomicetos a partir de algas submareales recogidas en distintas estaciones del litoral asturiano, un trabajo que se realiza en colaboración con el Centro de Experimentación Pesquera del Principado de Asturias y el Departamento de Organismos y Sistemas de la Universidad.
El equipo de Gloria Blanco también ha tomado parte en una de las campañas realizadas en el Cañón de Avilés dentro del proyecto de DOSMARES, donde fueron descubiertos actinomicetos capaces de vivir en los arrecifes coralinos hasta 4.700 metros de profundidad. Las muestras recogidas a 1.500 metros de profundidad han permitido identificar una nueva especie de actinomiceto que vive asociada a corales y estrellas de mar, que ha sido denominada como Myceligenerans cantabricum y que ya ha sido depositada en las Colecciones de Cultivos Tipo española (CECT) y alemana (DSMZ).
Blanco tambien señala que dado el gran número de actinomicetos productores de compuestos bioactivos que se han aislado y, conociendo las necesidades clínicas actuales de disponer de nuevos medicamentos, se hace prioritaria la profundización en este estudio para determinar la posible novedad de los compuestos obtenidos, elucidar su estructura química y valorar su posible interés médico-farmacéutico. Un grupo de especialistas en enfermedades infecciosas del HUCA y el Hospital de Cabueñes colabora en el análisis de las actividades antibióticas de los productos naturales obtenidos en este estudio. El carácter multidisciplinar de la investigación ha implicado a biólogos, químicos, médicos y biotecnólogos.

3 de octubre de 2014

MEDIANTE INGENIERÍA GENÉTICA EN ESPECIES DE ARBOLES LEÑOSOS SE HA AUMENTADO SU PRODUCCIÓN DE BIOMASA IMPORTANTE EN EL SECTOR DE BIOENERGÍA

Gracias a la biotecnología, los investigadores de la Universidad Politécnica de Madrid (UPM) han aumentado la producción de especies leñosas. Este resultado es de gran interés para el mercado de la energía. 
Mediante la modificación de la expresión de los genes responsables de la creación de ramas durante el primer año de especies leñosas, los investigadores del Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA), de la  UPM y el Instituto Nacional para la Investigación y Experimentación Agrícola (INIA), han encontrado una manera de aumentar la producción de biomasa de una plantación forestal, sin alterar su crecimiento, ni la composición o anatomía de la madera. Estos resultados tienen un importante valor de mercado para el sector de la bioenergía, por lo que este estudio ha sido protegido por una patente. 
Las yemas laterales de la mayoría de las especies leñosas en áreas cálidas y frías no brotan en la misma temporada en la que han nacido. Estos brotes, llamados prolépticos, permanecen latentes y no crecen hasta la primavera siguiente. Sin embargo, algunos brotes laterales brotan durante la misma temporada como en los álamos yotras especies salicáceas y muchas especies tropicales. De esta manera, una ramificación siléptica puede aumentar la cantidad de ramas, el área foliar y el crecimiento de los árboles en general, sobre todo durante sus primeros años de vida. 
Sobre esa base, los investigadores de la UPM han utilizado un procedimiento biotecnológico para modificar los niveles de expresión génica del gen RAV1 que incrementa el desarrollo de ramificación siléptica de especies leñosas. De esta manera, los investigadores han encontrado una manera de aumentar la producción de biomasa de una plantación de álamo. Este proceso de modificación genética es potencialmente aplicable a cualquier especie leñosa y usa sus características de adaptación a un hábitat particular. 
El procedimiento biotecnológico utilizado por estos investigadores puede garantizar los rendimientos de producción sostenible de biomasa de especies leñosas sin afectar a la demanda de alimentos. Estos resultados pueden también mitigar los efectos del calentamiento global y mejorar la seguridad energética.

26 de septiembre de 2014

LOGRAN PRODUCIR EN BACTERIAS UN MATERIAL ADHESIVO MUY FUERTE INCLUSO BAJO EL AGUA A PARTIR DE UNA MEZCLA COMPLEJA DE PROTEÍNAS BACTERIANAS Y PROTEÍNAS DEL BISO DEL MEJILLÓN

Los mariscos tales como mejillones y percebes secretan proteínas muy pegajosas que les ayudan a adherirse a las rocas o los cascos de los barcos incluso bajo el agua. Inspirado por estos adhesivos naturales, un equipo de ingenieros del MIT ha diseñado nuevos materiales adhesivos que podrían ser usados para reparar barcos o ayudar a curar heridas e incisiones quirúrgicas. 
Para crear sus nuevos adhesivos resistentes al agua, los investigadores del MIT diseñaron bacterias que produzcan un material híbrido que incorpora las proteínas pegajosas del mejillón, así como una proteína bacteriana que se encuentra en las biopelículas (capas viscosas formadas por las bacterias que crecen en una superficie). Cuando se combinan, estas proteínas forman adhesivos incluso más fuertes bajo el agua que las secretadas por los mejillones. 
Este proyecto representa un nuevo tipo de enfoque que puede ser explotado para sintetizar materiales biológicos con múltiples componentes, utilizando bacterias como pequeñas fábricas.
El profesor asociado de ingeniería biológica, ingeniería eléctrica y ciencias de la computación,Timothy Lu, comenta que el objetivo final es elaborar una plataforma en donde se pueda empezar a construir materiales que combinen múltiples dominios funcionales y ver si mejoran el rendimiento de los materiales adhesivos.
La sustancia pegajosa que ayuda a los mejillones a que se adhieren a las superficies submarinas está hecho de varias proteínas conocidas como proteínas del biso del mejillón. Los científicos han modificado previamente la bacteria E. coli para producir proteínas individuales del biso, pero estos materiales no captan la complejidad de los adhesivos naturales. En un nuevo estudio, el equipo del MIT quería diseñar bacterias para producir dos diferentes proteínas del biso, combinadas con proteínas bacterianas llamadas fibras curli (proteínas fibrosas que pueden agruparse y ensamblarse así mismas en mallas mucho más grandes y complejas).
El equipo diseñó bacterias de modo que pudieran producir proteínas que consistieran en fibras curli unidas a la proteína 3 o a la proteína 5 del biso. Después de purificar estas proteínas de las bacterias, los investigadores las dejaron incubar y formar densas mallas fibrosas. El material resultante tiene una estructura regular y flexible que se une fuertemente a las dos superficies secas y mojadas.
Los investigadores probaron los adhesivos usando microscopía de fuerza atómica (una técnica que explora la superficie de una muestra con una pequeña punta). Ellos encontraron que los adhesivos se unían fuertemente a las puntas hechas de tres materiales diferentes: sílice, oro y poliestireno. Los adhesivos ensamblados a partir de cantidades iguales de proteína 3 y proteína 5 forman adhesivos más fuertes que las que tienen una relación diferente, o sólo una de las dos proteínas.
Los investigadores dicen que estos adhesivos también son más fuertes que los adhesivos naturales del mejillón, y son los más fuertes de inspiración biológica hasta la fecha.
Usando esta técnica, los investigadores pudieron producir sólo pequeñas cantidades de adhesivo, por lo que ahora están tratando de mejorar el proceso y generar grandes cantidades del mismo. También planean experimentar con la adición de algunas de las otras proteínas del biso del mejillón para aumentar la fuerza de adhesión aún más y mejorar la robustez del material.
Ademas, el equipo tiene planeado tratar de crear "pegamentos vivientes" que consisten en películas de bacterias que podían sentir el daño a una superficie y luego repararlo mediante la secreción de un adhesivo.

21 de septiembre de 2014

DESCUBREN BACTERAS CAPACES DE DEGRADAR COMPUESTOS PRESENTES EN DESECHOS RADIACTIVOS BAJO CONDICIONES EXTREMADAMENTE ALCALINAS

La eliminación de desechos nucleares es muy complicada, con volúmenes muy grandes destinados a ser enterrados a gran profundidad. El mayor volumen de desechos radiactivos, corresponde a los del tipo catalogado como de nivel intermedio (ILW por sus siglas en inglés), que contienen grandes cantidades de material celulósico que deben ser encerrados en sarcófagos de hormigón antes de su almacenamiento en cámaras subterráneas especiales. Sin embargo, tarde o temprano, las aguas subterráneas acaban alcanzando estos materiales de desecho dando lugar a la predominancia de condiciones alcalinas donde se lleva acabo una serie de reacciones químicas que desencadenan la descomposición de los diversos materiales celulósicos presentes en estos desechos complejos.
Uno de los productos relacionados con estas actividades, el ácido isosacarínico, causa mucha preocupación porque puede reaccionar con una amplia gama de radionucleidos, elementos tóxicos e inestables que se constituyen durante la producción de energía nuclear y que dan forma al componente radiactivo del desecho nuclear. Si el ácido isosacarínico se enlaza químicamente a los radionucleidos, como por ejemplo, el uranio, entonces se vuelven mucho más solubles y aumenta la probabilidad de que fluyan fuera de las cámaras subterráneas, alcanzando acuíferos e incluso la superficie, con el consiguiente riesgo de que contaminen el agua potable o entren en la cadena alimentaria.
Se sabe de algunos microorganismos exóticos que son capaces de sobrevivir expuestos a elevadísimas dosis de radiactividad y que además realizan una actividad biogeoquímica que podría, potencialmente, ayudar a descontaminar lugares emponzoñados con desechos radiactivos, o a evitar que los residuos contaminantes se propaguen por el entorno. El hallazgo de una nueva bacteria de este tipo proyecta un rayo de esperanza sobre algunas de las cuestiones más punzantes de la problemática de los residuos nucleares.
El equipo de Jonathan Lloyd, de la Universidad de Manchester en el Reino Unido, ha descubierto bacterias extremófilas especializadas, que pueden vivir bajo las condiciones alcalinas que podemos esperar encontrar en los desechos radiactivos recubiertos con cemento. Los organismos no solo están adaptados de forma soberbia a vivir en desechos cálcicos altamente alcalinos, sino que pueden usar el ácido isosacarínico como fuente de alimento y energía bajo condiciones virtualmente idénticas a aquellas que se estima que existen dentro de los cementerios nucleares para desechos de nivel intermedio o en sus alrededores. Por ejemplo, cuando no hay oxígeno, un escenario probable en cámaras subterráneas de almacenamiento, que ayude a estas bacterias a “respirar” y descomponer el ácido isosacarínico, estos simples microorganismos unicelulares son capaces de cambiar su metabolismo para respirar usando otras sustancias en el agua, como nitrato o hierro III.
Los procesos biológicos fascinantes que utilizan para mantenerse con vida bajo condiciones tan extremas están siendo estudiados todavía por el equipo de la Universidad de Manchester, así como los efectos de estabilización de estas modestas bacterias sobre los desechos radiactivos, y todo apunta a que esta línea de investigación será muy fructífera.