"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."

3 de octubre de 2014

MEDIANTE INGENIERÍA GENÉTICA EN ESPECIES DE ARBOLES LEÑOSOS SE HA AUMENTADO SU PRODUCCIÓN DE BIOMASA IMPORTANTE EN EL SECTOR DE BIOENERGÍA

Gracias a la biotecnología, los investigadores de la Universidad Politécnica de Madrid (UPM) han aumentado la producción de especies leñosas. Este resultado es de gran interés para el mercado de la energía. 
Mediante la modificación de la expresión de los genes responsables de la creación de ramas durante el primer año de especies leñosas, los investigadores del Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA), de la  UPM y el Instituto Nacional para la Investigación y Experimentación Agrícola (INIA), han encontrado una manera de aumentar la producción de biomasa de una plantación forestal, sin alterar su crecimiento, ni la composición o anatomía de la madera. Estos resultados tienen un importante valor de mercado para el sector de la bioenergía, por lo que este estudio ha sido protegido por una patente. 
Las yemas laterales de la mayoría de las especies leñosas en áreas cálidas y frías no brotan en la misma temporada en la que han nacido. Estos brotes, llamados prolépticos, permanecen latentes y no crecen hasta la primavera siguiente. Sin embargo, algunos brotes laterales brotan durante la misma temporada como en los álamos yotras especies salicáceas y muchas especies tropicales. De esta manera, una ramificación siléptica puede aumentar la cantidad de ramas, el área foliar y el crecimiento de los árboles en general, sobre todo durante sus primeros años de vida. 
Sobre esa base, los investigadores de la UPM han utilizado un procedimiento biotecnológico para modificar los niveles de expresión génica del gen RAV1 que incrementa el desarrollo de ramificación siléptica de especies leñosas. De esta manera, los investigadores han encontrado una manera de aumentar la producción de biomasa de una plantación de álamo. Este proceso de modificación genética es potencialmente aplicable a cualquier especie leñosa y usa sus características de adaptación a un hábitat particular. 
El procedimiento biotecnológico utilizado por estos investigadores puede garantizar los rendimientos de producción sostenible de biomasa de especies leñosas sin afectar a la demanda de alimentos. Estos resultados pueden también mitigar los efectos del calentamiento global y mejorar la seguridad energética.

26 de septiembre de 2014

LOGRAN PRODUCIR EN BACTERIAS UN MATERIAL ADHESIVO MUY FUERTE INCLUSO BAJO EL AGUA A PARTIR DE UNA MEZCLA COMPLEJA DE PROTEÍNAS BACTERIANAS Y PROTEÍNAS DEL BISO DEL MEJILLÓN

Los mariscos tales como mejillones y percebes secretan proteínas muy pegajosas que les ayudan a adherirse a las rocas o los cascos de los barcos incluso bajo el agua. Inspirado por estos adhesivos naturales, un equipo de ingenieros del MIT ha diseñado nuevos materiales adhesivos que podrían ser usados para reparar barcos o ayudar a curar heridas e incisiones quirúrgicas. 
Para crear sus nuevos adhesivos resistentes al agua, los investigadores del MIT diseñaron bacterias que produzcan un material híbrido que incorpora las proteínas pegajosas del mejillón, así como una proteína bacteriana que se encuentra en las biopelículas (capas viscosas formadas por las bacterias que crecen en una superficie). Cuando se combinan, estas proteínas forman adhesivos incluso más fuertes bajo el agua que las secretadas por los mejillones. 
Este proyecto representa un nuevo tipo de enfoque que puede ser explotado para sintetizar materiales biológicos con múltiples componentes, utilizando bacterias como pequeñas fábricas.
El profesor asociado de ingeniería biológica, ingeniería eléctrica y ciencias de la computación,Timothy Lu, comenta que el objetivo final es elaborar una plataforma en donde se pueda empezar a construir materiales que combinen múltiples dominios funcionales y ver si mejoran el rendimiento de los materiales adhesivos.
La sustancia pegajosa que ayuda a los mejillones a que se adhieren a las superficies submarinas está hecho de varias proteínas conocidas como proteínas del biso del mejillón. Los científicos han modificado previamente la bacteria E. coli para producir proteínas individuales del biso, pero estos materiales no captan la complejidad de los adhesivos naturales. En un nuevo estudio, el equipo del MIT quería diseñar bacterias para producir dos diferentes proteínas del biso, combinadas con proteínas bacterianas llamadas fibras curli (proteínas fibrosas que pueden agruparse y ensamblarse así mismas en mallas mucho más grandes y complejas).
El equipo diseñó bacterias de modo que pudieran producir proteínas que consistieran en fibras curli unidas a la proteína 3 o a la proteína 5 del biso. Después de purificar estas proteínas de las bacterias, los investigadores las dejaron incubar y formar densas mallas fibrosas. El material resultante tiene una estructura regular y flexible que se une fuertemente a las dos superficies secas y mojadas.
Los investigadores probaron los adhesivos usando microscopía de fuerza atómica (una técnica que explora la superficie de una muestra con una pequeña punta). Ellos encontraron que los adhesivos se unían fuertemente a las puntas hechas de tres materiales diferentes: sílice, oro y poliestireno. Los adhesivos ensamblados a partir de cantidades iguales de proteína 3 y proteína 5 forman adhesivos más fuertes que las que tienen una relación diferente, o sólo una de las dos proteínas.
Los investigadores dicen que estos adhesivos también son más fuertes que los adhesivos naturales del mejillón, y son los más fuertes de inspiración biológica hasta la fecha.
Usando esta técnica, los investigadores pudieron producir sólo pequeñas cantidades de adhesivo, por lo que ahora están tratando de mejorar el proceso y generar grandes cantidades del mismo. También planean experimentar con la adición de algunas de las otras proteínas del biso del mejillón para aumentar la fuerza de adhesión aún más y mejorar la robustez del material.
Ademas, el equipo tiene planeado tratar de crear "pegamentos vivientes" que consisten en películas de bacterias que podían sentir el daño a una superficie y luego repararlo mediante la secreción de un adhesivo.

21 de septiembre de 2014

DESCUBREN BACTERAS CAPACES DE DEGRADAR COMPUESTOS PRESENTES EN DESECHOS RADIACTIVOS BAJO CONDICIONES EXTREMADAMENTE ALCALINAS

La eliminación de desechos nucleares es muy complicada, con volúmenes muy grandes destinados a ser enterrados a gran profundidad. El mayor volumen de desechos radiactivos, corresponde a los del tipo catalogado como de nivel intermedio (ILW por sus siglas en inglés), que contienen grandes cantidades de material celulósico que deben ser encerrados en sarcófagos de hormigón antes de su almacenamiento en cámaras subterráneas especiales. Sin embargo, tarde o temprano, las aguas subterráneas acaban alcanzando estos materiales de desecho dando lugar a la predominancia de condiciones alcalinas donde se lleva acabo una serie de reacciones químicas que desencadenan la descomposición de los diversos materiales celulósicos presentes en estos desechos complejos.
Uno de los productos relacionados con estas actividades, el ácido isosacarínico, causa mucha preocupación porque puede reaccionar con una amplia gama de radionucleidos, elementos tóxicos e inestables que se constituyen durante la producción de energía nuclear y que dan forma al componente radiactivo del desecho nuclear. Si el ácido isosacarínico se enlaza químicamente a los radionucleidos, como por ejemplo, el uranio, entonces se vuelven mucho más solubles y aumenta la probabilidad de que fluyan fuera de las cámaras subterráneas, alcanzando acuíferos e incluso la superficie, con el consiguiente riesgo de que contaminen el agua potable o entren en la cadena alimentaria.
Se sabe de algunos microorganismos exóticos que son capaces de sobrevivir expuestos a elevadísimas dosis de radiactividad y que además realizan una actividad biogeoquímica que podría, potencialmente, ayudar a descontaminar lugares emponzoñados con desechos radiactivos, o a evitar que los residuos contaminantes se propaguen por el entorno. El hallazgo de una nueva bacteria de este tipo proyecta un rayo de esperanza sobre algunas de las cuestiones más punzantes de la problemática de los residuos nucleares.
El equipo de Jonathan Lloyd, de la Universidad de Manchester en el Reino Unido, ha descubierto bacterias extremófilas especializadas, que pueden vivir bajo las condiciones alcalinas que podemos esperar encontrar en los desechos radiactivos recubiertos con cemento. Los organismos no solo están adaptados de forma soberbia a vivir en desechos cálcicos altamente alcalinos, sino que pueden usar el ácido isosacarínico como fuente de alimento y energía bajo condiciones virtualmente idénticas a aquellas que se estima que existen dentro de los cementerios nucleares para desechos de nivel intermedio o en sus alrededores. Por ejemplo, cuando no hay oxígeno, un escenario probable en cámaras subterráneas de almacenamiento, que ayude a estas bacterias a “respirar” y descomponer el ácido isosacarínico, estos simples microorganismos unicelulares son capaces de cambiar su metabolismo para respirar usando otras sustancias en el agua, como nitrato o hierro III.
Los procesos biológicos fascinantes que utilizan para mantenerse con vida bajo condiciones tan extremas están siendo estudiados todavía por el equipo de la Universidad de Manchester, así como los efectos de estabilización de estas modestas bacterias sobre los desechos radiactivos, y todo apunta a que esta línea de investigación será muy fructífera.

18 de septiembre de 2014

CIENTÍFICOS LOGRAN PRODUCIR COMBUSTIBLE FÓSIL RENOBABLE EN BACTERIAS MEDIANTE INGENIERÍA METABÓLICA

Investigadores han logrado modificar las bacterias intestinales E. coli para generar propano renovable. El desarrollo es un paso hacia la producción comercial de una fuente de combustible que algún día podría proporcionar una alternativa a los combustibles fósiles. 
El propano es una fuente atractiva de combustible limpio ya que tiene un mercado global existente en la actualidad. Ya es producido como un subproducto durante el procesamiento del gas natural y el refinamiento del petróleo, pero ambos son recursos finitos. En su forma actual constituye la mayor parte del LPG (gas licuado de petróleo), que se utiliza en muchas aplicaciones, desde calefacción a las estufas de camping y vehículos motorizados convencionales. 
En un nuevo estudio, el equipo de científicos del Imperial College de Londres y la Universidad de Turku en Finlandia utilizó Escherichia coli para interrumpir el proceso biológico que convierte los ácidos grasos en membranas celulares. Los investigadores utilizaron enzimas para canalizar los ácidos grasos hacia una vía biológica diferente, de modo que las bacterias hacen propano renovable listo para su uso en motores en lugar de membranas celulares. 
Su objetivo final es la inserción de este sistema de ingeniería metabótica en bacterias fotosintéticas, y así algún día convertir directamente la energía solar en combustible químico.
El Dr. Patrik Jones, del Departamento de Ciencias de la Vida del Imperial College de Londres, afirma que aunque esta investigación está en una etapa muy temprana, su estudio ofrece un método para la producción renovable de un combustible que antes sólo era accesible desde las reservas fósiles. Aunque los cientificos sólo han producido pequeñas cantidades hasta ahora, el combustible que han producido está listo para ser utilizado en un motor de inmediato. Esto abre posibilidades para la futura producción sostenible de combustibles renovables que en un principio podrían complementar, y posteriormente sustituir a los combustibles fósiles como el diesel, la gasolina, el gas natural y el combustible para aviones.
Los científicos eligieron como objetivo el propano, ya que puede escapar fácilmente de la célula como un gas, sin embargo, requiere pequeñas cantidades de energía para transformarse desde su estado gaseoso natural en un líquido fácil de transportar, almacenar y utilizar. 
EL Dr. Jones añade que los combustibles fósiles son un recurso finito y como la población sigue creciendo se va a tener que encontrar nuevas formas de satisfacer las crecientes demandas de energía. Por lo tanto, es un reto importante desarrollar un proceso renovable que sea barato y económicamente sustentable.
Por el momento las algas se pueden utilizar para hacer biodiesel, pero no es comercialmente viable pues la cosecha y el procesamiento requieren una gran cantidad de energía y dinero; por el contrario, el propano puede ser separado del proceso natural con un mínimo de energía.
Usando la E. coli como organismo huésped, los científicos interrumpieron el proceso biológico que convierte los ácidos grasos en membranas celulares. Al detener este proceso en una etapa temprana ellos pudieron  remover el ácido butírico, un compuesto con olor desagradable que es un precursor esencial para la producción de propano. 
Para interrumpir el proceso, los investigadores descubrieron una nueva variante de una enzima llamada tioesterasa que actúa específicamente sobre los ácidos grasos y las libera del proceso natural. Luego utilizaron una segunda enzima bacteriana, denominada CAR, para convertir el ácido butírico en butiraldehído. Finalmente, añadieron una enzima recientemente descubierta llamada ADO, conocida por crear hidrocarburos naturalmente , con el fin de formar propano. 
Los intentos anteriores de utilizar la enzima ADO han resultado decepcionantes, ya que los científicos han sido incapaces de aprovechar el poder natural de la enzima para crear un combustible más limpio. Pero los científicos del Imperial College descubrieron que mediante la estimulación de la ADO con electrones serían capaces de mejorar sustancialmente la capacidad catalítica de la enzima, y en última instancia producir propano. 
El nivel de propano que los científicos produjeron es en la actualidad mil veces menos de lo que sería necesario para convertirlo en un producto comercial, por lo que ahora están trabajando en el perfeccionamiento de su proceso de síntesis recientemente diseñado. El Dr. Jones indica que no tienen una comprensión completa de cómo exactamente se hacen las moléculas de combustible, por lo que ahora están tratando de averiguar exactamente cómo se desarrolla este proceso. Ël espera que en los próximos 5 a 10 años sean capaces de lograr procesos comercialmente viables que alimentarán de forma sostenible nuestra demanda energética.

9 de septiembre de 2014

UN PROMETEDORA NUEVA VACUNA SE MUESTRA COMO UN POTENTE INMUNIZADOR CONTRA LA TUBERCULOSIS Y LA LEPRA

En muchas partes del mundo, la lepra y la tuberculosis viven lado a lado. A nivel mundial hay aproximadamente 233.000 casos nuevos de lepra por año, con casi la totalidad de ellos ocurriendo donde la tuberculosis es endémica.
La vacuna centenaria BCG, disponible actualmente, ofrece sólo una protección parcial tanto contra la tuberculosis como contra la lepra, así que se necesita una vacuna más potente para combatir ambas enfermedades. La investigación dirigida por la UCLA puede que haya encontrado un arma más potente contra ambas enfermedades. 
Los investigadores encontraron que rBCG30, una variante recombinante de BCG que sobreexpresa una proteína muy abundante de 30kDa de la bacteria de la tuberculosis conocida como Antígeno 85B, es superior a la BCG en la protección contra la tuberculosis en modelos animales, y también ofrece una protección cruzada contra la lepra. Además, encontraron que reforzando rBCG30 con la proteína Antígeno 85B, una proteína expresada también por el bacilo de la lepra, proporciona una protección considerablemente más fuerte contra la lepra. 
El Dr. Marcus A. Horwitz, profesor de medicina y microbiología, inmunología y genética molecular, y el autor principal del estudio comenta que este es el primer estudio que demuestra que una vacuna mejorada contra la tuberculosis también ofrece protección cruzada contra Mycobacterium leprae, el agente causante de la lepra, lo que significa que esta vacuna es prometedora para una mejor protección contra dos importantes enfermedades al mismo tiempo. Agregó además que también es el primer estudio que demuestra que reforzando una vacuna BCG recombinante mejora aún más la protección cruzada contra la lepra. 
En un primer experimento, unos ratones fueron inmunizados o con la vacuna rBCG30 o con la vacuna BCG, o por el contrario se les dio una solución de sal. Diez semanas después, los ratones fueron inyectados con bacterias vivas de la lepra en las almohadillas de las patas y siete meses después de eso, se midió el número de bacterias de la lepra en en esa parte de las patas. Los investigadores encontraron que los ratones que recibieron BCG o rBCG30 tenían mucho menos bacterias de la lepra en sus almohadillas que los ratones que recibieron la solución salina. Además, los ratones inmunizados con rBCG30 tuvieron significativamente menos bacterias de la lepra que aquellos vacunados con BCG
En un segundo experimento, los ratones se inmunizaron primero con BCG o rBCG30, y luego inmunizados con una vacuna de refuerzo (r30) que consiste en la proteína Antígeno 85B de 30kDa de la bacteria de la tuberculosis en adyuvante, es decir, en una formulación química que aumenta la respuesta inmune. El grupo de ratones inmunizados con rBCG30 y reforzado con R30 no tenían bacterias de la lepra detectables en sus almohadillas, en contraste con los grupos de ratones inmunizados con todas las otras vacunas probadas, incluyendo BCG y rBCG30 a solas y BCG reforzado con r30.
En otros experimentos, se midieron las respuestas inmunes de los ratones después de la vacunación. Los ratones inmunizados con rBCG30 y reforzado con r30 habían mejorado notablemente la respuesta inmune a la versión del Antígeno 85B de la bacteria de la lepra (que es muy similar a la expresada por el bacilo de la tuberculosis) en comparación con los ratones inmunizados con las otras vacunas ycon las combinaciones de las mismas.
Un ensayo en humanos en Fase 1 para rBCG30 ha demostrado que es segura y significativamente más eficaz que la BCG, y es la única vacuna de reemplazo candidata para BCG probado hasta el momento para satisfacer ambos criterios clínicos clave. Sin embargo, Horwitz señaló que este estudio más reciente, con respecto a la lepra, se llevó a cabo en un modelo animal, por lo que se necesitan más estudios para evaluar la eficacia de la vacuna rBCG30 en la protección contra la lepra en humanos. El siguiente paso en la investigación será probar la eficacia de la vacuna rBCG30 contra la tuberculosis en humanos. Si es eficaz contra la tuberculosis, entonces el siguiente paso sería probar su eficacia contra la lepra.