"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."

21 de septiembre de 2014

DESCUBREN BACTERAS CAPACES DE DEGRADAR COMPUESTOS PRESENTES EN DESECHOS RADIACTIVOS BAJO CONDICIONES EXTREMADAMENTE ALCALINAS

La eliminación de desechos nucleares es muy complicada, con volúmenes muy grandes destinados a ser enterrados a gran profundidad. El mayor volumen de desechos radiactivos, corresponde a los del tipo catalogado como de nivel intermedio (ILW por sus siglas en inglés), que contienen grandes cantidades de material celulósico que deben ser encerrados en sarcófagos de hormigón antes de su almacenamiento en cámaras subterráneas especiales. Sin embargo, tarde o temprano, las aguas subterráneas acaban alcanzando estos materiales de desecho dando lugar a la predominancia de condiciones alcalinas donde se lleva acabo una serie de reacciones químicas que desencadenan la descomposición de los diversos materiales celulósicos presentes en estos desechos complejos.
Uno de los productos relacionados con estas actividades, el ácido isosacarínico, causa mucha preocupación porque puede reaccionar con una amplia gama de radionucleidos, elementos tóxicos e inestables que se constituyen durante la producción de energía nuclear y que dan forma al componente radiactivo del desecho nuclear. Si el ácido isosacarínico se enlaza químicamente a los radionucleidos, como por ejemplo, el uranio, entonces se vuelven mucho más solubles y aumenta la probabilidad de que fluyan fuera de las cámaras subterráneas, alcanzando acuíferos e incluso la superficie, con el consiguiente riesgo de que contaminen el agua potable o entren en la cadena alimentaria.
Se sabe de algunos microorganismos exóticos que son capaces de sobrevivir expuestos a elevadísimas dosis de radiactividad y que además realizan una actividad biogeoquímica que podría, potencialmente, ayudar a descontaminar lugares emponzoñados con desechos radiactivos, o a evitar que los residuos contaminantes se propaguen por el entorno. El hallazgo de una nueva bacteria de este tipo proyecta un rayo de esperanza sobre algunas de las cuestiones más punzantes de la problemática de los residuos nucleares.
El equipo de Jonathan Lloyd, de la Universidad de Manchester en el Reino Unido, ha descubierto bacterias extremófilas especializadas, que pueden vivir bajo las condiciones alcalinas que podemos esperar encontrar en los desechos radiactivos recubiertos con cemento. Los organismos no solo están adaptados de forma soberbia a vivir en desechos cálcicos altamente alcalinos, sino que pueden usar el ácido isosacarínico como fuente de alimento y energía bajo condiciones virtualmente idénticas a aquellas que se estima que existen dentro de los cementerios nucleares para desechos de nivel intermedio o en sus alrededores. Por ejemplo, cuando no hay oxígeno, un escenario probable en cámaras subterráneas de almacenamiento, que ayude a estas bacterias a “respirar” y descomponer el ácido isosacarínico, estos simples microorganismos unicelulares son capaces de cambiar su metabolismo para respirar usando otras sustancias en el agua, como nitrato o hierro III.
Los procesos biológicos fascinantes que utilizan para mantenerse con vida bajo condiciones tan extremas están siendo estudiados todavía por el equipo de la Universidad de Manchester, así como los efectos de estabilización de estas modestas bacterias sobre los desechos radiactivos, y todo apunta a que esta línea de investigación será muy fructífera.

18 de septiembre de 2014

CIENTÍFICOS LOGRAN PRODUCIR COMBUSTIBLE FÓSIL RENOBABLE EN BACTERIAS MEDIANTE INGENIERÍA METABÓLICA

Investigadores han logrado modificar las bacterias intestinales E. coli para generar propano renovable. El desarrollo es un paso hacia la producción comercial de una fuente de combustible que algún día podría proporcionar una alternativa a los combustibles fósiles. 
El propano es una fuente atractiva de combustible limpio ya que tiene un mercado global existente en la actualidad. Ya es producido como un subproducto durante el procesamiento del gas natural y el refinamiento del petróleo, pero ambos son recursos finitos. En su forma actual constituye la mayor parte del LPG (gas licuado de petróleo), que se utiliza en muchas aplicaciones, desde calefacción a las estufas de camping y vehículos motorizados convencionales. 
En un nuevo estudio, el equipo de científicos del Imperial College de Londres y la Universidad de Turku en Finlandia utilizó Escherichia coli para interrumpir el proceso biológico que convierte los ácidos grasos en membranas celulares. Los investigadores utilizaron enzimas para canalizar los ácidos grasos hacia una vía biológica diferente, de modo que las bacterias hacen propano renovable listo para su uso en motores en lugar de membranas celulares. 
Su objetivo final es la inserción de este sistema de ingeniería metabótica en bacterias fotosintéticas, y así algún día convertir directamente la energía solar en combustible químico.
El Dr. Patrik Jones, del Departamento de Ciencias de la Vida del Imperial College de Londres, afirma que aunque esta investigación está en una etapa muy temprana, su estudio ofrece un método para la producción renovable de un combustible que antes sólo era accesible desde las reservas fósiles. Aunque los cientificos sólo han producido pequeñas cantidades hasta ahora, el combustible que han producido está listo para ser utilizado en un motor de inmediato. Esto abre posibilidades para la futura producción sostenible de combustibles renovables que en un principio podrían complementar, y posteriormente sustituir a los combustibles fósiles como el diesel, la gasolina, el gas natural y el combustible para aviones.
Los científicos eligieron como objetivo el propano, ya que puede escapar fácilmente de la célula como un gas, sin embargo, requiere pequeñas cantidades de energía para transformarse desde su estado gaseoso natural en un líquido fácil de transportar, almacenar y utilizar. 
EL Dr. Jones añade que los combustibles fósiles son un recurso finito y como la población sigue creciendo se va a tener que encontrar nuevas formas de satisfacer las crecientes demandas de energía. Por lo tanto, es un reto importante desarrollar un proceso renovable que sea barato y económicamente sustentable.
Por el momento las algas se pueden utilizar para hacer biodiesel, pero no es comercialmente viable pues la cosecha y el procesamiento requieren una gran cantidad de energía y dinero; por el contrario, el propano puede ser separado del proceso natural con un mínimo de energía.
Usando la E. coli como organismo huésped, los científicos interrumpieron el proceso biológico que convierte los ácidos grasos en membranas celulares. Al detener este proceso en una etapa temprana ellos pudieron  remover el ácido butírico, un compuesto con olor desagradable que es un precursor esencial para la producción de propano. 
Para interrumpir el proceso, los investigadores descubrieron una nueva variante de una enzima llamada tioesterasa que actúa específicamente sobre los ácidos grasos y las libera del proceso natural. Luego utilizaron una segunda enzima bacteriana, denominada CAR, para convertir el ácido butírico en butiraldehído. Finalmente, añadieron una enzima recientemente descubierta llamada ADO, conocida por crear hidrocarburos naturalmente , con el fin de formar propano. 
Los intentos anteriores de utilizar la enzima ADO han resultado decepcionantes, ya que los científicos han sido incapaces de aprovechar el poder natural de la enzima para crear un combustible más limpio. Pero los científicos del Imperial College descubrieron que mediante la estimulación de la ADO con electrones serían capaces de mejorar sustancialmente la capacidad catalítica de la enzima, y en última instancia producir propano. 
El nivel de propano que los científicos produjeron es en la actualidad mil veces menos de lo que sería necesario para convertirlo en un producto comercial, por lo que ahora están trabajando en el perfeccionamiento de su proceso de síntesis recientemente diseñado. El Dr. Jones indica que no tienen una comprensión completa de cómo exactamente se hacen las moléculas de combustible, por lo que ahora están tratando de averiguar exactamente cómo se desarrolla este proceso. Ël espera que en los próximos 5 a 10 años sean capaces de lograr procesos comercialmente viables que alimentarán de forma sostenible nuestra demanda energética.

9 de septiembre de 2014

UN PROMETEDORA NUEVA VACUNA SE MUESTRA COMO UN POTENTE INMUNIZADOR CONTRA LA TUBERCULOSIS Y LA LEPRA

En muchas partes del mundo, la lepra y la tuberculosis viven lado a lado. A nivel mundial hay aproximadamente 233.000 casos nuevos de lepra por año, con casi la totalidad de ellos ocurriendo donde la tuberculosis es endémica.
La vacuna centenaria BCG, disponible actualmente, ofrece sólo una protección parcial tanto contra la tuberculosis como contra la lepra, así que se necesita una vacuna más potente para combatir ambas enfermedades. La investigación dirigida por la UCLA puede que haya encontrado un arma más potente contra ambas enfermedades. 
Los investigadores encontraron que rBCG30, una variante recombinante de BCG que sobreexpresa una proteína muy abundante de 30kDa de la bacteria de la tuberculosis conocida como Antígeno 85B, es superior a la BCG en la protección contra la tuberculosis en modelos animales, y también ofrece una protección cruzada contra la lepra. Además, encontraron que reforzando rBCG30 con la proteína Antígeno 85B, una proteína expresada también por el bacilo de la lepra, proporciona una protección considerablemente más fuerte contra la lepra. 
El Dr. Marcus A. Horwitz, profesor de medicina y microbiología, inmunología y genética molecular, y el autor principal del estudio comenta que este es el primer estudio que demuestra que una vacuna mejorada contra la tuberculosis también ofrece protección cruzada contra Mycobacterium leprae, el agente causante de la lepra, lo que significa que esta vacuna es prometedora para una mejor protección contra dos importantes enfermedades al mismo tiempo. Agregó además que también es el primer estudio que demuestra que reforzando una vacuna BCG recombinante mejora aún más la protección cruzada contra la lepra. 
En un primer experimento, unos ratones fueron inmunizados o con la vacuna rBCG30 o con la vacuna BCG, o por el contrario se les dio una solución de sal. Diez semanas después, los ratones fueron inyectados con bacterias vivas de la lepra en las almohadillas de las patas y siete meses después de eso, se midió el número de bacterias de la lepra en en esa parte de las patas. Los investigadores encontraron que los ratones que recibieron BCG o rBCG30 tenían mucho menos bacterias de la lepra en sus almohadillas que los ratones que recibieron la solución salina. Además, los ratones inmunizados con rBCG30 tuvieron significativamente menos bacterias de la lepra que aquellos vacunados con BCG
En un segundo experimento, los ratones se inmunizaron primero con BCG o rBCG30, y luego inmunizados con una vacuna de refuerzo (r30) que consiste en la proteína Antígeno 85B de 30kDa de la bacteria de la tuberculosis en adyuvante, es decir, en una formulación química que aumenta la respuesta inmune. El grupo de ratones inmunizados con rBCG30 y reforzado con R30 no tenían bacterias de la lepra detectables en sus almohadillas, en contraste con los grupos de ratones inmunizados con todas las otras vacunas probadas, incluyendo BCG y rBCG30 a solas y BCG reforzado con r30.
En otros experimentos, se midieron las respuestas inmunes de los ratones después de la vacunación. Los ratones inmunizados con rBCG30 y reforzado con r30 habían mejorado notablemente la respuesta inmune a la versión del Antígeno 85B de la bacteria de la lepra (que es muy similar a la expresada por el bacilo de la tuberculosis) en comparación con los ratones inmunizados con las otras vacunas ycon las combinaciones de las mismas.
Un ensayo en humanos en Fase 1 para rBCG30 ha demostrado que es segura y significativamente más eficaz que la BCG, y es la única vacuna de reemplazo candidata para BCG probado hasta el momento para satisfacer ambos criterios clínicos clave. Sin embargo, Horwitz señaló que este estudio más reciente, con respecto a la lepra, se llevó a cabo en un modelo animal, por lo que se necesitan más estudios para evaluar la eficacia de la vacuna rBCG30 en la protección contra la lepra en humanos. El siguiente paso en la investigación será probar la eficacia de la vacuna rBCG30 contra la tuberculosis en humanos. Si es eficaz contra la tuberculosis, entonces el siguiente paso sería probar su eficacia contra la lepra.

30 de agosto de 2014

PLANTEAN HACER USO DE BACTERIAS INTESTINALES GENÉTICAMENTE MODIFICADAS COMO PROBIÓTICOS PARA PREVENIR Y TRATAR LA OBESIDAD Y OTROS ENFERMEDADES CRÓNICAS

Investigadores de la Universidad de Vanderbilt, Estados Unidos, han descubierto bacterias que producen un compuesto terapéutico en el intestino que inhiben el aumento de peso, la resistencia a la insulina y otros efectos adversos de una dieta alta en grasa en ratones experimentales.
El investigador principal Sean Davies, Ph.D. y profesor adjunto de Farmacología, afirma que en esencia se ha evitado la mayoría de las consecuencias negativas de la obesidad en ratones, incluso aunque ellos hayan estado comiendo una dieta alta en grasas.
Ciertos temas reglamentarios deben ser abordados antes de pasar a estudios en humanos, pero los resultados sugieren que puede ser posible manipular las bacterias residentes en el intestino para tratar la obesidad y otras enfermedades crónicas.
Davies tiene un interés de largos años en usar bacterias probióticas (bacterias amigables como las de yogurt) para suministrar fármacos al intestino de una manera sostenida, con el fin de eliminar los regímenes diarios de medicamentos asociados a las enfermedades crónicas.
Otros estudios han demostrado que la microbiota natural del intestino juega un papel importante en la obesidad, la diabetes y en las enfermedades cardiovasculares, por lo que Davies y su equipo se preguntaron si se podría manipular la microbiota intestinal de una manera que promueva la salud y no implique riesgo de contraer enfermedades crónicas.
Para empezar, el equipo necesitaba una cepa bacteriana segura que coloniza el intestino humano. Ellos seleccionaron la cepa E. coli Nissle 1917, que ha sido utilizado como tratamiento probiótico para la diarrea desde su descubrimiento hace casi 100 años.
Ellos modificaron genéticamente la cepa de E. coli para producir un compuesto lipídico llamado NAPE, que normalmente se sintetiza en el intestino delgado en respuesta a la alimentación. El NAPE se convierte rápidamente en NAE, un compuesto que reduce tanto la ingesta de alimentos como el aumento de peso. Alguna evidencia sugiere que la producción de NAPE puede ser muy reducida en los individuos que comen una dieta alta en grasas.
Los investigadores añadieron las bacterias productoras de NAPE al agua de los ratones que comieron una dieta alta en grasas durante ocho semanas. Los ratones que recibieron las bacterias modificadas tenían una dramáticamente menor ingesta de alimentos, grasa corporal, resistencia a la insulina e hígado graso en comparación con los ratones que recibieron las bacterias de control.
Ellos encontraron que estos efectos protectores persistieron durante al menos cuatro semanas después de que las bacterias productoras de NAPE fueran removidas del agua. Incluso doce semanas después de retiradas las bacterias modificadas, los ratones tratados aún tenían un peso y grasa corporal mucho más bajo en comparación con los ratones de control. Las bacterias activas ya no persistieron después de unas seis semanas.
Como comentó Sean Davies, todavía no han logrado su objetivo final, el cual sería hacer un solo tratamiento para luego no tener que administrar bacterias nuevamente. Ellos consideran que se puede obtener suficientes bacterias para que persistan en el intestino y tengan un efecto sostenido, es decir, un efecto que dure más tiempo.
Sean Davies señaló además que su equipo también observó efectos de los compuestos en el hígado, lo que sugiere que puede ser posible usar bacterias modificadas para entregar agentes terapéuticos más allá del intestino.
Actualmente, los investigadores están trabajando en estrategias para abordar los temas reglamentarios relativas a la contención de las bacterias, por ejemplo, silenciando genes requeridos por los microorganismos para vivir fuera del huésped tratado.

18 de agosto de 2014

ESTUDIAN UNA CIANOBACTERIA MARINA PARA LA PRODUCCIÓN MÁS ECONÓMICA Y EFICIENTE DE BIOCOMBUSTIBLES

En la búsqueda de fuentes renovables de energía, los sistemas que utilizan algas parecen ser una buena opción. Las algas pueden crecer con notable rapidez y en altas concentraciones en zonas que no son aptas para la agricultura; y a medida que crecen, acumulan grandes cantidades de lípidos, que son moléculas que contienen carbono que puede ser extraído y transformado en biogasóleo (biodiésel) y otros combustibles ricos en energía. Sin embargo, tras tres décadas de trabajo, no se ha conseguido producir biocombustibles a partir de algas de forma comercialmente viable, en parte debido a que los procesos necesarios para degradar las algas y capturar los lípidos son costosos y de alto consumo energético.
Durante los últimos 25 años, Sallie Chisholm, del Instituto Tecnológico de Massachusetts (MIT) en Cambridge, Estados Unidos, ha estado estudiando a las Prochlorococcus, uno de los tipos más abundantes de las cianobacterias marinas popularmente conocidas con nombres como "algas verdiazules", y capaces de realizar la fotosíntesis. Las bacterias Prochlorococcus poseen una cualidad singular: De entre todos los organismos que realizan la fotosíntesis, esta criatura unicelular es la más abundante y la más pequeña (mide menos de 1 micrómetro de diámetro). Es responsable del 10% de toda la fotosíntesis en la Tierra, y constituye la base de la cadena alimentaria oceánica. De entre todas las células fotosintéticas conocidas, la Prochlorococcus es la que tiene el genoma más pequeño. Tres mil millones de años de evolución han eliminado todo lo superfluo en su genoma, y ahora contiene justo lo necesario para crear biomasa a partir de dióxido de carbono y energía solar.
Tiene pues sentido tomar a este organismo como referencia y estudiarlo a fondo, a fin de vislumbrar formas idóneas de producir biogasóleo por vía microbiana y a partir de luz solar como fuente energética del proceso. Sobre todo, teniendo en cuenta que, tal como el equipo de Chisholm descubrió tiempo atrás, a medida que crece esta bacteria, produce y libera de forma natural vesículas extracelulares, paquetes esféricos ricos en sustancias grasas parecidas a las que hacen tan atractivas a las algas para el sector de los biocombustibles.
Las implicaciones de todo esto para el uso industrial, incluyendo la producción de biocombustibles, son significativas. A partir de tan solo luz solar, dióxido de carbono, y agua, la Prochlorococcus liberaría continuamente vesículas ricas en lípidos, las cuales podrían ser capturadas sin perturbar a las bacterias en crecimiento. Sería un enfoque mucho más productivo que los tradicionales, en los cuales se extraen lípidos directamente de las algas, en un proceso que requiere destruir un lote de células y comenzar con uno nuevo. Con la Prochlorococcus, el proceso sería de cultivo ininterrumpido.
La línea de investigación y desarrollo en la que trabaja el equipo de Chisholm y Steven Biller no va encaminada expresamente a crear una tecnología que permita recolectar las citadas vesículas en viveros de Prochlorococcus, ya que esas vesículas no son del tipo óptimo para fabricar biocombustibles. Pero debido a la sencillez de su genoma, es un buen modelo para hurgar en él y aprender a manejar los mecanismos que regulan la formación y emisión de vesículas y determinan su contenido. Una vez que los científicos conozcan bien cómo funciona, ese mecanismo podría llegar a ser usado en organismos más robustos y de rápido crecimiento, y se podría manipular el contenido de las vesículas.