"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."

25 de julio de 2014

AISLAN E IDENTIFICAN BACTERIAS LIXIVIADORAS PARA OPTIMIZAR LA EXTRACCIÓN DE COBRE EN LAS MINAS

Durante la extracción de cobre en las minas es común que se genere mineral de baja ley, el cual posee un contenido muy reducido de dicho metal y uno muy elevado de azufre. Los métodos tradicionales químicos para liberarlo tienen un costo elevado y un impacto negativo en el medio ambiente; sin embargo, científicos mexicanos han identificado bacterias capaces de realizar esa labor, a las cuales se les está sometiendo a un proceso genético con el fin de optimizar sus funciones.
El equipo científico responsable de tal hallazgo es liderado por el doctor Sergio Casas Flores, adscrito a la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), quien comenta que el proyecto inició en el año 2009.
Un par de universidades mexicanas así como la Minera Grupo México se acercaron al equipo científico para que les ayuden a resolver algunos problemas en la Mina La Caridad, ubicada en Sonora. Asimismo, querían que se identificaran las bacterias responsables de la lixiviación, es decir, de liberar al cobre del mineral de baja ley (con escaso o nulo valor comercial) para tenerlo en su forma pura.
Las bacterias que encontraron en aquel lugar son endémicas de la minera e inofensivas para el ser humano. El siguiente paso consiste en rociar los microorganismos, literalmente, sobre el mineral de baja ley para que se instalen e inicien sus actividades metabólicas, es decir, utilicen el azufre como fuente de energía para liberar el cobre. Los cientificos quieren probar distintas cantidades de bacterias en terreros pilotos para ver cuál es la más adecuada para obtener la mayor cantidad del metal e incrementar el rendimiento.
Agrega que en dicho método, las bacterias realizan un proceso de óxido-reducción, lo que significa que mediante actividades enzimáticas ayudan al cobre a separarse de los minerales de baja ley.
Para identificar a los microorganismos biolixiviantes y potenciar sus funciones se realizaron estudios moleculares de muestras de los terreros de la mina. De acuerdo con el investigador, uno de ellos fue mediante la metagenómica, que consiste en aislar el ácido desoxirribonucleico (ADN) de las bacterias para identificar si eran capaces o no de contribuir en la lixiviación.
Por otra parte, también recurrieron a la metatrascriptómica, que consiste en extraer el ácido ribonucleico (ARN) de los microorganismos con la finalidad de conocer sus actividades fisiológicas y, de esta manera, realizar modificaciones genéticas para incrementar su capacidad de liberar cobre.
De acuerdo con el doctor Casas Flores, este proyecto va a tener impactos ecológicos importantes por tratarse de un procedimiento amigable ambientalmente, así como económicos para los productores de cobre al incrementar su rendimiento y abatir los costos de producción.

22 de julio de 2014

CREAN UN BIOINSECTICIDA A PARTIR DE MEZCLAS DE VIRUS PARA COMBATIR PLAGAS AGRÍCOLAS

Un grupo internacional de científicos desarrolló un bioinsecticida con resultados de gran impacto que han permitido enfrentar plagas en hortalizas y otras problemáticas en diversos cultivos.
El equipo científico, integrado por franceses y españoles, brindó solución a daños por plagas en hortalizas en el sur de España y las Islas Canarias. Se trata de un modelo de creación de virus que hasta el momento no ha encontrado similitud en el mundo, pues no se trata de ingeniería genética.
Trevor Williams, uno de los científicos, explica que hace unos años una primera patente fue otorgada por el desarrollo de un insecticida biológico solicitado por un cooperativo de productores del sur de España para el control de Spodopteras exigua, un insecto que puede atacar a más de 60 especies de plantas cultivadas pertenecientes a 23 familias botánicas.
El desarrollo del bioinsecticida se llevó a cabo cuando el doctor Williams era parte de la plantilla de científicos de El Colegio de la Frontera Sur, en México, y se obtuvo la patente en el año en que se integró al Instituto de Ecología A.C.(Inecol), 2007.
Los  científicos comentan que el sistema desarrollado ha funcionado muy bien. Ellos aislaron el virus en su ambiente, después los separaron en sus componentes genotipos y encontraron que pueden existir ocho, diez o más en cada aislado de virus; luego analizaron cada genotipo por separado y encontraron diferencias importantes en su patogenicidad, en su capacidad de producir virus en un nuevo huésped, y particularmente en su tiempo para matar.
Una vez separados todos estos genotipos naturales hicieron mezclas únicas de los mismos, que no existen en la naturaleza, y a partir de ellas lograron diseñar un insecticida que tiene un tiempo efectivo para matar al insecto; su propia patogenicidad se crea en base a las necesidades que se tengan.
Posteriormente, a través del trabajo de tesis de doctorado en España, se planeó la pregunta de que pasaría si en lugar de mezclar genotipos de virus se mezclaran virus de diferentes especies de insecto plaga. En un cultivo hay presentes varias plagas de orugas que lo afectan, entonces los investigadores pretendieron producir mezclas de virus de cada plaga para crear un insecticida que pueda controlar dos o tres plagas al mismo tiempo.
Trevor Williams indica que una vez solicitada la patente se han publicado los resultados del desarrollo y se ha observado que el modelo de producir los insecticidas de esta manera es único en el mundo. El científico indica además que este trabajo no es producto de ingeniería genética porque todos los genotipos son naturales no modificados; ellos los mezclaron en proporciones no naturales con el fin de producir el mejor insecticida posible.

16 de julio de 2014

MEJORAN LA CALIDAD DE LA CARNE BOVINA MEDIANTE EL USO DE MARCADORES MOLECULARES

Una de las actividades económicas más importantes en México es la producción de carne y para contribuir con la industria ganadera-bovina, especialistas del Instituto Politécnico Nacional (IPN) de ese país identificaron con marcadores de ADN qué poblaciones de la raza Charolais tienen diferencias en la frecuencia de alelos, que son genes asociados a una mayor calidad de carne en cuanto a la suavidad y el marmoleo, que es la grasa intramuscular de la misma.
La investigación que se lleva a cabo en el Centro de Biotecnología Genómica (CEBIOGEN) en Tamaulipas, a cargo de la doctora Ana María Sifuentes Rincón, se ha enfocado a la caracterización genética y molecular de diferentes razas de ganado bovino.
La especialista politécnica señala que su equipo busca herramientas que permitan a los productores de la región la selección del ganado e identificar los más productivos, que tengan mayor potencial genético y calidad de carne así como los ejemplares rentables para mejorar la raza.
Los marcadores moleculares sirven para identificar unas regiones en el genoma del bovino que se asocian con características de interés del ganado, y se emplean como herramientas de diagnóstico molecular a fin de identificar genes de calidad de la carne, predisposición a enfermedades genéticas y resistencia a enfermedades.
La investigadora politécnica agrega que dicha etapa de la investigación ya fue concluida en diferentes poblaciones de ganado Charolais de registro, las cuales fueron elegidas porque, de acuerdo con la cadena productiva que prevalece en el país, el mejoramiento genético empieza en razas puras y para rasgos complejos se centra en la calidad de la carne.
La doctora detalla que en la industria pecuaria, la identificación del objetivo de crianza es fundamental para el establecimiento de las estrategias de mejoramiento genético, la ganadería de carne y la calidad es fundamental ya que de ello depende la comercialización del producto. Como la calidad de la carne incluye las características sensoriales: suavidad, jugosidad, color, valor nutricional y rasgos sanitarios, es importante la aplicación de una estrategia que abarque cada una, dado que en ocasiones implica evaluar el ejemplar hasta su sacrificio.
Ante ello, gran parte de la aplicación de los estudios genómicos en ganado de carne se ha enfocado a la búsqueda de las regiones donde se obtenga el material genético de cuya variación pueda predecirse las características antes mencionadas. Y por medio de una prueba de ADN conocer el genotipo de cada animal, determinar si es portador de variaciones favorables o no.
La especialista del CEBIOGEN menciona que en estas poblaciones de ganado, el manejo asistido por marcadores funciona para determinar el potencial genético de los animales, y todos deben ser genotipificados.
En la actualidad en México se emplea el criterio de selección basado en características del crecimiento, pero no para la calidad y producción de carne. Ya se aplica la prueba de paternidad para identificar la consanguinidad de los sementales con las crías a fin de saber cuáles son los más productivos y seleccionarlos para las siguientes generaciones.
Además se puede identificar la salud del bovino y determinar cuáles ejemplares son portadores de enfermedades genéticas. Este trabajo también identificó qué pruebas permitirán predecir y qué ejemplar tiene el potencial de ser más o menos productivo.

15 de junio de 2014

DISEÑAN BACTERIAS MODIFICADAS GENÉTICAMENTE PARA LA CONVERSIÓN DIRECTA DE BIOMASA A BIOCOMBUSTIBLE

La promesa de los combustibles asequibles a partir de biomasa ha sido dejado perpetuamente en suspenso por los costos del proceso de conversión. Una nueva investigación de la Universidad de Georgia (UGA) ha superado este obstáculo que permite la conversión directa del pasto varilla (hierba nativa de Norteamérica) en combustible.
El estudio documenta la transformación directa de la biomasa en biocombustible sin tratamiento previo, utilizando la bacteria Caldicellulosiruptor bescii genéticamente modificada.
El pretratamiento de la materia prima de biomasa (cultivos no alimentarios como el mijo) consiste en romper las paredes celulares de la planta antes de la fermentación en etanol. Esta etapa de pretratamiento ha sido por mucho tiempo el cuello de botella económico que dificulta la producción de combustibles a partir de materias primas de biomasa lignocelulósica.
Janet Westpheling, profesora en el departamento de genética del Colegio Franklin de Artes y Ciencias, y su equipo de investigadores, miembros del Centro de Ciencias de la BioEnergía (BESC), tuvieron éxito en la modificación genética de la bacteria C. bescii para desensamblar la biomasa vegetal sin tratamiento previo.
Westpheling pasó dos años y medio en el desarrollo de métodos genéticos para la manipulación genética de la bacteria C. bescii  y que haga posible el trabajo actual. Ella afirma que la parte mas dificil de enseñar al microorganismo fue la de cómo desensamblar la biomasa.
El grupo de investigación de la UGA diseñó una ruta sintética en la bacteria, introduciendo genes de otra bacteria anaerobia que producen etanol, y construyeron una ruta en el microbio para producir etanol directamente.
Westpheling comenta que ahora, sin ningún tratamiento previo, se puede simplemente tomar el pasto varilla, molerlo, añadir un medio mínimo de sales de bajo costo, y obtener etanol. Este es el primer paso hacia un proceso industrial económicamente factible.
La recalcitrancia de la biomasa vegetal para la producción de combustibles evolucionó en las plantas durante millones de años, y es resultado de sus paredes celulares rígidas que han sido la clave de su supervivencia y el principal obstáculo para la producción de biocombustibles. El entender la base científica y en última instancia eliminar la recalcitrancia ha sido la misión central de los investigadores.
Paul Gilna, director del Centro de Ciencias de la BioEnergía (BESC), cometa que tomar un organismo prácticamente desconocido y sin caracterizar y utilizar técnicas de ingeniería para producir un biocombustible de elección en el plazo de unos pocos años es un logro científico imponente para el grupo de la Dr. Westpheling y para BESC.
Las bacterias Caldicellulosiruptor se han aislado alrededor del mundo, desde un manantial caliente en Rusia al Parque Nacional de Yellowstone en Estados Unidos. Westpheling explicó que muchos microbios en la naturaleza demuestran capacidades preciadas en la química y la biología, pero que desarrollar los sistemas genéticos para usarlos es el reto más importante. La biología de sistemas permite el diseño de rutas artificiales dentro de organismos que les permiten hacer cosas que ellos no pueden hacer de otra manera.
El etanol no es más que uno de los productos que se le puede enseñar a la bacteria a producir. Otros productos incluyen butanol e isobutanol, así como otros combustibles y productos químicos que utilizan la biomasa como una alternativa al petróleo.

5 de junio de 2014

AVANCES EN EL DESARROLLO DE UNA VACUNA CONTRA LA MALARIA MEDIANTE EL USO DE PARÁSITOS GENÉTICAMENTE MODIFICADOS

Investigadores de Seattle BioMed anunciaron que han desarrollado una nueva generación de parásitos genéticamente atenuados (GAP) que podrían constituir el camino hacia una vacuna altamente protectora contra la malaria.
La malaria es causada por parásitos Plasmodium que se transmiten a los humanos por la picadura de mosquitos. Aunque las medidas de control, tales como mosquiteros, se implementan cada vez más, no existe ninguna vacuna eficaz capaz de erradicar la enfermedad.
El trabajo de los investigadores describe el desarrollo de parásitos de la malaria genéticamente modificados que son debilitados por la remoción precisa de genes y diseñados para prevenir eficazmente que el parásito induzca una infección en los seres humanos. Estos parásitos atenuados genéticamente son incapaces de multiplicarse, pero están vivos y capaz de estimular eficazmente el sistema inmune para construir defensas que prevengan la infección patógena. Si bien las vacunas ha demostrado ser muy eficaz en la protección contra los virus y bacterias, estas siguen siendo un enfoque nuevo en la lucha contra los parásitos.
Stefan Kappe, Ph.D., autor y profesor correspondiente de Seattle BioMed afirma que si bien la vacunación con parásitos vivos atenuados es capaz de proporcionar una protección completa contra la infección de la malaria, es imperativo que se pueda inutilizar permanentemente el complejo parásito de la malaria de modo que no pueda causar la enfermedad, y en su lugar, preparar eficazmente el sistema inmunológico.
La cepa GAP de primera generación (Ver aqui) tenía dos genes extraídos del parásito, pero esta nueva técnica, desarrollada en colaboración con científicos del Instituto Walter y Eliza Hall, en Australia, elimina tres genes independientes asociados con la patogenicidad del parásito, derogando de manera efectiva su capacidad de establecer una infección en los seres humanos.
El siguiente paso es probar la seguridad y eficacia de este parásito atenuado en los ensayos clínicos de una manera muy eficiente. El Centro de Ensayos Clínicos de Seattle BioMed es uno de los cuatro centros en el mundo aprobado para probar con seguridad y eficacia nuevos tratamientos contra la malaria y vacunas en seres humanos mediante el modelo de exposición humana a la malaria.