"No solo basta con encontrar el camino correcto, sino tambien recorrerlo y llegar al destino a pesar de que no existe el limite. Biotecnología, ciencia del presente para el futuro."

30 de enero de 2015

MEDIANTE EL USO DE UN NUEVO CÓDIGO GENÉTICO RELACIONADO A AMINOÁCIDOS SINTÉTICOS, CIENTÍFICOS BUSCAN GENERALIZAR EL USO DE OGMs DE MANERA MAS SEGURA EN EL MEDIO AMBIENTE.

Científicos de la Universidad de Yale han ideado una manera de asegurarse de que los organismos modificados genéticamente (OGMs) puedan ser confinados de una manera segura en el medio ambiente, superando el principal obstáculo para el uso generalizado de los OMGs en la agricultura, la producción de energía, la gestión de residuos, y la medicina.
Los investigadores de la Universidad de Yale reescribieron el ADN de una cepa bacteriana de modo que requiera la presencia de un aminoácido sintético especial que no existe en la naturaleza para activar los genes esenciales para el crecimiento. 
Farren Isaacs, profesor asistente en el Departamento de Biología Molecular, Celular y  del Desarrollo y en el Instituto de Biología de Sistemas en West Campus, y autor principal del artículo indica que esta es una mejora significativa de los alcances existentes en la biocontención de los OGMs y establece importantes salvaguardias para estos organismos en ambientes agrícolas, y más ampliamente, para su uso en la biorremediación ambiental e incluso en terapias médicas.
Isaacs, Jesse Rinehart, Alexis Rovner y demás colegas de Yale llaman a estas nuevas bacterias organismos genómicamente recodificados (OGRs) porque tienen un nuevo código genético ideado por el equipo de investigadores. El nuevo código permitió al equipo vincular el crecimiento de las bacterias a los aminoácidos sintéticos que no se encuentran en la naturaleza, estableciendo una salvaguardia importante que limita la propagación y la supervivencia de estos organismos en ambientes naturales.
En un segundo estudio, Isaacs, Ryan Gallagher, y Jaymin Patel diseñaron una estrategia de salvaguardias de múltiples capas que también limitan el crecimiento de los OGMs a ambientes que contienen un conjunto diferente de moléculas sintéticas. Este estudio describe un conjunto complementario de salvaguardias diferentes y portátiles capaces de asegurar una amplia gama de organismos.
Estos OGMs seguros mejorarán la eficiencia de este tipo de organismos manipulados, que ahora solo están siendo utilizados en sistemas cerrados, tales como la producción de productos farmacéuticos, combustibles y productos químicos nuevos. Las preocupaciones sobre el uso de OGMs en entornos abiertos, sin embargo, ha limitado su adopción en otras áreas.
Los autores también dicen que el nuevo código emparejado con aminoácidos artificiales permitirá a los científicos crear OGMs más seguros para su uso en sistemas abiertos, que incluyen la mejora de la producción de alimentos, probióticos diseñados para combatir una serie de enfermedades y microorganismos especializados que limpien los derrames de petróleo y vertederos.
Finalmente, el Sr. Isaacs comenta que a medida que la biología sintética conduce a la aparición de OGMs más sofisticados para hacer frente a los grandes desafíos mencionados, los científicos deben asumir un papel proactivo en el establecimiento de soluciones seguras y eficaces para la biotecnología, similares a aquellos quienes han trabajado para asegurar la Internet en la década de 1990.

24 de enero de 2015

AVANCES EN LA COMPRENSION DE LAS INTRINCADAS REDES REGULADORAS DE LOS GENES QUE CONTROLAN EL ENGROSAMIENTO DE LA PARED CELULAR VEGETAL PODRÍAN LLEVAR A MEJORAR LA EFICIENCIA EN LA PRODUCCIÓN DE BIOCOMBUSTIBLES

Unos genetistas especializados en plantas que incluyen a Sam Hazen de la Universidad de Massachusetts Amherst, y Siobhan Brady de la Universidad de California, han resuelto las redes reguladoras de los genes que controlan el engrosamiento de la pared celular por la síntesis de tres polímeros, la celulosa, la hemicelulosa y la lignina.
Los autores dicen que el más rígido de los polímeros, la lignina, representa un gran obstáculo para extraer los azúcares de la biomasa vegetal que pueden ser utilizados para producir biocombustibles. Se espera este avance sirva como base para la comprensión de la regulación de un componente vegetal integral y complejo (pared celular) y como un mapa de cómo los futuros investigadores podrían manipular los procesos formadores de polímeros para mejorar la eficiencia de la producción de biocombustibles.
Los tres polímeros claves, que se encuentran en tejidos vegetales conocidos como xilema, proporcionan a las plantas resistencia mecánica y de células resistentes al agua que transportan el liquido elemento. Trabajando en la planta modelo Arabidopsis thaliana, Hazen, Brady y sus colegas exploraron cómo un gran número de factores de transcripción interconectados regulan el engrosamiento del xilema y de la pared celular.
Entender cómo se controlan las proporciones relativas de estos biopolímeros en el tejido vegetal abriría oportunidades para rediseñar las plantas para el uso de biocombustibles.En este estudio se identificaron cientos de nuevos reguladores los cuales ofrecen una importante visión de la regulación del desarrollo de la diferenciación de las células del xilema.
En concreto, usando una serie de sistemas para identificar las interacciones proteína-DNA, ellos realizaron el barrido de más de 460 factores de transcripción expresados en el xilema de la raíz para explorar su capacidad de unirse a los promotores de unos 50 genes que se sabe están involucrados en los procesos que producen los componentes de la pared celular. Hazen indica que esto reveló una red altamente interconectada de más de 240 genes y más de 600 interacciones proteína-DNA que no se habían conocido antes.
Ellos también encontraron que cada gen de la pared celular en la red reguladora del xilema está unido a un promedio de cinco factores de transcripción diferentes de 35 familias distintas de proteínas reguladoras. Además, muchos de los factores de transcripción forman un número sorprendentemente grande de bucles feed-forward que coregulan los genes diana.
En otras palabras, en lugar de una serie de interruptores de encendido y apagado que conduce a una acción final como la fabricación de celulosa, la mayoría de las proteínas, incluyendo los reguladores del ciclo celular y la diferenciación se unen directamente a los genes de celulosa y a otros reguladores de la transcripción. Esto le da a las plantas un gran número de posibles combinaciones para responder y adaptarse al estrés ambiental, tales como la sal o la sequía, señalan los autores.
Aunque este estudio pudo identificar nodos interactivos, las técnicas utilizadas no fueron capaces de permitir a los autores determinar exactamente que tipos de bucles fee-forward están presentes en la red de regulación del xilema. Sin embargo, el trabajo ofrece un marco para futuras investigaciones que deberian permitir a los investigadores identificar maneras de manipular esta red y diseñar cultivos energéticos para la producción de biocombustibles.